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Abstract

One of the most important problems in quantum information the-

ory is the control and identi�cation of quantum states and quantum

channels. The challenge of this problem is that in case of quantum

systems the measurement changes the state of the system, making the

interference and information gaining more di�cult.

In this thesis I am dealing with the question of estimating quan-

tum channels. The aim of my work is the realization and testing of

a procedure capable of estimating quantum channels based onconvex

optimization for the case of two level quantum systems, and the for-

mulation and solving of an experiment design problem for �nding the

optimal measurement also in the case of two level, but singleparameter

quantum channels.

The results of channel estimation are that with pure inputs,more

accurate estimation can be carried out than with mixed inputstates,

and if multiple input states are used, then the estimation performance

increases signi�cantly.

The result of experiment design problem is that if the channel out-

put is pure, then the optimal measurement direction is always in the

axis de�ned by the output state.

For the numerical solving of the parameter estimation and experi-

ment design problems, moreover for the implementing of procedures

realizing the subproblems I used MATLAB environment.

Keywords : quantum systems, parameter estimation, optimization,

experiment design
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Kivonat

A kvantum információelmélet egyik legfontosabb problémája a

kvantumállapotok és kvantumcsatornák irányítása és identi�kációja.

Ez jelent®s kihívás, ugyanis kvantum rendszerek esetében amérés meg-

változtatja a rendszer állapotát, megnehezítve ezzel a beavatkozást és

információszerzést.

Ebben a dolgozatban a kvantumcsatornák becslésének kérdésével

foglalkozom. Munkám célja egy kvantumcsatorna becslésre alkalmas,

konvex optimalizáláson alapuló eljárás megvalósítása, éstesztelése két-

szint¶ kvantum rendszerek esetére, valamint egy kísérlettervezési fel-

adat megfogalmazása és megoldása optimális mérés keresésére szintén

kétszint¶, de egyparaméteres kvantum csatornák esetében.

A csatornabecslési feladat eredményeként megállapítható, hogy

tiszta állapotokat használva pontosabb becslés tehet®, mint keverék

állapotokkal, illetve ha több bemeneti állapotot használunk, akkor a

becslés hatékonysága jelent®sen javul.

A kísérlettervezési feladat megoldása eredményeként megállapítot-

tam, hogy ha a csatorna kimenete tiszta, vagy közel tiszta állapot,

akkor az optimális mérési irány mindig a kimenet által meghatározott

tengelyen, vagy annak közelében helyezkedik el.

A paraméterbecslési és kísérlettervezési feladatok numerikus meg-

oldásához, valamint a szükséges részfeladatokat megvalósító eljárások

implementálásához MATLAB környezetet használtam.

Kulcsszavak : kvantum rendszerek, paraméterbecslés, optimalizá-

lás, kísérlettervezés
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Chapter 1

Introduction

Atoms on a small scale behave like nothing on a large scale, for

they satisfy the laws of quantum mechanics. So, as we go down

and �ddle around with the atoms down there, we are working with

di�erent laws, and we can expect to do di�erent things.

� R. P. Feynman

1.1 Background and motivation

In these days, the building of quantum computers that can be used to solve

realistic, large scale problems�including the breaking ofcryptographic codes

and the simulation of complex quantum systems�has two main di�culties

from the theoretical point of view. The �rst is decoherence,in other words the

unavoidable coupling of quantum systems with their environment, which leads

to the altering or even the complete destruction of the quantum system's state,

thus causing errors in the calculation. The other main obstacle is the lack of

ability to fully manipulate and extract full information fr om the physical sys-

tem, i.e. the control and estimation of the quantum states and processes. This

latter problem has to be handled by the formalism of the modern methods of

system- and control theory. It is certainly not a trivial problem, as in quantum

mechanics, one has to face the di�culty of the threatment of measurements.

Namely, that no measurement can be carried out on a quantum system without

disturbing the state of the system itself.

The task of the identi�cation of quantum processes�commonly known as

quantum process tomography (QPT)�got a signi�cant attenti on over about

1



1. Introduction

the last ten years. It is undoubtedly a fundamental problem of quantum infor-

mation theory, as it has considerable relevance not only in quantum computers,

but also in the �eld of quantum communication and cryptography. For exam-

ple, quantum communication channels usually rely on a priori knowledge of

the channel properties.

The problem of quantum process tomography was thus proposedby several

authors, I introduce a few of them here. In the work [1] the di�erent methods

already available for process tomography were reviewed, and compared with

respect to the required physical resources. The authors of [2] consider the case

of estimating physical processes with randomly prepared inputs and random

measurements using a maximum-likelihood formulation. Thegoal of the pa-

per [3] is to extend the maximum entropy principle to the caseof incomplete

quantum process estimation. The work of [4] formulates the task of process to-

mography as a convex optimization problem. This work also considers another

important question in the �eld of system identi�cation, namely the problem of

optimal experiment design, and derives optimization problems to compute the

optimal number of experiments needed. The same goal is set in[5], where the

authors seek to optimize experiment design for general one parameter quan-

tum processes using analytical methods. In [6] the subproblem of optimal input

design is examined.

1.2 Problem statement

There are two principally di�erent approaches to quantum process tomog-

raphy, the statistical approach and the convex optimization based approach.

The former gives information on the statistics of the estimate and on its co-

variance matrix, but it is hard to compute in higher dimensions. In contrast,

the optimization method does not give as much information, but it is easy to

compute, and it is closer to engineering mentality.

In this thesis, the choise is thus made on the latter, and based on the an-

alyzing of the literature, a convex optimization method forthe estimation of

two level quantum processes is to be derived and implemented. Then the ob-

tained optimization problem has to be solved for the case of di�erent quantum

channel models, di�erent types of input states, and the performance in each

case has to be analyized.

As the second main objective, the problem of experiment design for the

estimation of single parameter quantum processes acting ontwo level systems

2



1.3. Structure of the thesis

has to be considered, an optimizaton problem for determining of the opti-

mal measurement has to be derived and solved for di�erent input states and

channels.

1.3 Structure of the thesis

The thesis is organized as follows. Chapter 2 gives an introduction about

the basic notions of quantum information, system identi�cation, and convex

optimization.

Chapter 3 gives the problem statement of quantum process tomography,

and presents my work and results.

Chapter 4 introduces the experiment design problem for the quantum case

and my problem statement, then describes my solution and results.

Chapter 5 summarizes and concludes my work, then presents some possible

further tasks on the subject.

In Appendix A a short aximomatic introduction on quantum mechanics

was placed for the inexpert reader.

Finally, in Appendix B the MATLAB scripts used in the problems adressed

by the thesis were put.

3



Chapter 2

Basics of quantum information

and parameter estimation

In the �rst two sections of this chapter I shortly present a few basic concepts

of quantum informatics, mostly based on [7, 8]. For the inexpert reader I

recommend before these sections the study of Appendix A. In the further

sections I give a very brief introduction on the basics of system parameter

estimation and experiment design problems based on the book[9], and �nally

on the basics of convex optimization using [10].

2.1 The qubit

The most basic information containing unit of quantum information the-

ory is the two-state system. This is called �quantum bit�, orqubit for short.

Considering its speci�c physical realization, the qubit can be the spin of any

half-integer spin particle (for example the spin of an electron), or the two

di�erent polarization states of a photon.

The possible states of a qubit are the elements of the two dimensional

Hilbert space:

j i = � j0i + � j1i ; where�; � 2 C; and j� j2 + j� j2 = 1 : (2.1)

Thus in contrast to the classical bit, which can only be0 or 1, the qubit can

also take the arbitrary complex superposition of the statesj0i and j1i . The j0i

and j1i states are usually calledcomputational basis. If we measure a qubit in

the computational basis, then the state of the qubit after measurement will

be j0i with probability j� j2, and j1i with probability j� j2. However, if we only

4



2.1. The qubit

know that a measurement has happened, but the result is unknown, then the

state of the system can be given as the weighted statistical ensemble of the

two possible outcome states, i.e. as a density operator:

� = j� j2j0ih0j + j� j2j1ih1j : (2.2)

In the case of one qubit, we can de�ne three independent physical quantities

that can be measured. Traditionally, these are denoted by three operators, the

Pauli operators� x , � y and � z (in other notations � 1, � 2, � 3 or X , Y, Z ), whose

matrices in the computational basis are:

� x =

 
0 1

1 0

!

; � y =

 
0 � i

i 0

!

; � z =

 
1 0

0 � 1

!

: (2.3)

An important property of the Pauli matrices is that they are self-adjoint,

their eigenvalues are real, their square is the identity matrix ( I ). Furthermore,

together with the identity matrix they form a basis in the space of2� 2 complex

matrices. The commutation relations of the Pauli matrices is expressed by the

following relationship:

� a� b = � abI + i "abc� c ;

where"abc is the Levi-Civita symbol.1

If we put the qubit in question into a z directional external magnetic �eld,

then we get from the solution of the corresponding Schrödinger equation that

the spin is precessing around thez axis. This gives the opportunity to a�ect

the state of the qubit arbitrarily with appropriately choosen extrenal magnetic

�elds acting for a su�ciently long time.

The qubit can be described in a very expressive model, in the so-called

Bloch sphere2 [11], which can be seen in Figure 2.1. It can be shown that

all possible2 � 2 density operators�i.e. all the possible states of the qubit�

can be identi�ed uniquely with a point in the volume borderedby the three

dimensional unit sphere. The correspondence is given by theequation

� =
1
2

 
1 + x3 x1 � ix2

x1 + i x2 1 � x3

!

; (2.4)

which comes from the fact that all2 � 2 density matrices can be expanded in

1If (a; b; c) is an even permutation of (x; y; z), then "abc = 1 , in case of odd permutation
"abc = � 1, else"abc = 0 .

2The sphere got its name from the physicist Felix Bloch, one ofHeisenberg's students.
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2. Basics of quantum information and parameter estimation

the Pauli basis:� = 1
2(I + x1� 1 + x2� 2 + x3� 3). The parametersx1, x2, x3 form

the Bloch vector, which points to a unique point in the three dimensional unit

sphere.

The positivity constraint of the density matrix transforms within this parametriza-

tion to the constraint kxk =
p

x2
1 + x2

2 + x2
3 � 1. The pure and mixed states

also can be distinguished in this model. The pure states takeplace on the sur-

face of the sphere, and the mixed states can be found in the interior. Refering

to the case of the half-integer spin particle, the pure states are calledcom-

pletely polarized, and moving towards the interior of the sphere the state gets

depolarized, in the middle takes place thecompletely depolarizedstate.

2.2 Distance between quantum states

What do we mean by the distance of two quantum states? For the measur-

ing of the distance of states we can use the so-calledstatic measures. Among

these, one of the most common is the�delity , which is though not a metric,

but can be very useful.

The general de�nition of the �delity is the following:

F (�; � ) = Tr
� q

�
1
2 ��

1
2

�
: (2.5)

Figure 2.1. It can be seen on the Bloch sphere, that all pure states of a qubit can also be
written in j (�; ' )i form.
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2.3. Quantum channels

The F (�; � ) thus gives the distance of the states� and � , so it is capable for

example of measuring that how much a qubit appearing at the output of a

quantum channel decayed compared to the input while passingthrough the

channel. The �delity takes values between0 and 1, i.e. 0 � F � 1. If the

states � and � are equal, thenF (�; � ) = 1 , and if they completely di�er,

then F (�; � ) = 0 . It is important that the �delity is invariant under unitary

transformations, i.e.

F (U� Uy; U� Uy) = F (�; � ) : (2.6)

We must also see that the �delity is a symmetric function in its variables. This

can be easily seen from Uhlmann's theorem (see page410of [8]), according to

which

F (�; � ) = max
j i ;j ' i

jh j' ij ; (2.7)

where the maximization has to be performed on all the possible puri�cations

j i and j' i of the mixed states� and � . This expression also illustrates well

that the �delity is small if the states and their puri�cation s are orthogonal.

In some special cases, the de�nition of the �delity can be given more simply.

First, let us take the case of pure states. Let these two states bej i and j' i .

Then the �delity:

F (j i ; j' i ) = jh j' ij : (2.8)

Now let us see, what is the �delity if one of the states is an arbitrary � , and

the other is a purej i :

F (j i ; � ) =
p

h j� j i : (2.9)

2.3 Quantum channels

During quantum communication we have to send the system containing the

quantum information to another location, while during computation with a

quantum computer we have to evolve the inner state of the computer in time.

The common feature of these two actions is that the system of importance

interacts inevitably with its environment, which can not beneglected. Those

models, which model the e�ect of the environment on the system are jointly

called quantum channels.

A quantum channel is thus an open system, so for its complete examination

and mathematical representation we have to use the density operator formal-

ism. Then to know what happens with the system, the density operator of the

7



2. Basics of quantum information and parameter estimation

subsystem of importance has to be tracked. As described in Section A.4, the

time evolution of density matrices can be described by so-called superopera-

tors.

The superoperator is nothing else than a$ : � ! � 0 type map, i.e. a

map taking density operators to density operators, which has to possess the

following proprties:

ˆ According to the postulates of quantum mechanics, it has tobe linear.

ˆ As it operates on density matrices, it has to preserve theirproperties, so

it has to be positive and trace preserving.

ˆ It has to be completely positive3. This means that the superoperator$
I n

acting on the n dimensional expansion of our system is also positive in

case of an arbitraryn, whereI n is the identity map.

Now let us consider how we get the superoperator describing our system's

time evolution. Let � be the density operator of our system with a state space

H, and let the environment with state spaceH E be in somej ih j pure state.

Then the time evolution of the complete� 
 j  ih j system is by de�nition

U(� 
 j  ih j)Uy : (2.10)

The above description of time evolution using theU time evolution operator

is calledunitary representation. Form this we get the time evolution of theH

system by taking the partial trace of (2.10) with respect to the environment:

� 0 = Tr H E

�
U(� 
 j  ih j)Uy

�
=

X

j

hj jUj i � h jUyjj i : (2.11)

Herehj jUj i is evidently an operator acting on theH system, which we denote

by M j . Then we get an easily manageable mathematical form of the superop-

erator, whose name isoperator-sum representation(or Kraus representation):

� 0 = $( � ) =
X

j

M j � My
j ; (2.12)

where we call theM j operators theoperator elementsof the $ map. Because

3Based on the completely positivity and trace preserving property the superoperators are
also commonly called CPTP maps.

8



2.3. Quantum channels

of the unitarity of U it also holds that

X

j

My
j M j = 1̂ ; (2.13)

which expresses the trace preserving property of$. If we de�ne the channel

directly with the operator elements, and not by deriving it from the unitary

representation, then we have to pay attention that (2.13) holds.

The big advantage of the Kraus representation is that it describes the dy-

namics of the system without needing the attributes of the environment to

be taken into account explicitly; all nesessary information is embedded into

the operator elements, which only have e�ect on our system. However we can

mention as a drawback, that the description of quantum channels in this way

is not unique. A given superoperator$ has more equivalent Kraus represen-

tations, as for the deriving of$ we can perform the partial trace in (2.11) in

an arbitrary basis. It can be shown, that if in place of afj j ig basis, we use

an fj i i =
P

j Uij jj ig basis, then the relation between the operator elements of

the two bases:

Ni = Uij M j ; (2.14)

whereUij is a unitary matrix. 4

There is also a third possible description of the system's time evolution,

the state representant, which is in e�ect a density operator de�ned on the

H 
 H E space. The matrix representation of this density operator is com-

monly calledChoi matrix, which is in essence the matrix representation of the

superoperator$. Between the Kraus representation and the state representant

the Jamioªkowski isomorphism [12, 13] makes connection.

Let jei H
H E be a maximally entangled state of the system (H) and its

environment (H E ), i.e.

jei H
H E
:=

X

i

ji ij i i E ;

wherefj i ig and fj i i E g are the respective bases of the spacesH and H E . With

the help of this let us de�ne a vector in theH 
 H E space, which we assign to

the quantum state � :5

j� ii :=
�
� 
 1̂

�
jei H
H E =

X

i

� ji ij i i E ;

4If the two bases does not contain the same number of vectors, then we augment the
smaller one with zero vectors.

5The j:ii notation tries to indicate that these vectors represent operators.
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2. Basics of quantum information and parameter estimation

This assignment is obviously unique, and it also can be seen that jei H
H E �

j1ii .

Generally we can assign vectors this way to arbitraryA, B linear operators.

The scalar product of these vectors inH 
 H E is de�ned in a natural way:

hhAjBii :=

 
X

i

hi jAy
E hi j

!  
X

j

Bjj ij j i E

!

= Tr
�
AyB

�
; (2.15)

what is by de�nition the Hilbert�Schmidt scalar product of t he two operators.

We can identify two other rules also easily:

�
A 
 B

�
jCii = jBCAT ii ; (2.16)

and

Tr H
�
jAiihhBj

�
= AB y ; (2.17)

whereA; B 2 L (H E ). From the above we see that an isomorphism can be made

between the density operators and the pure states of the space H 
 H E .

Similarly we can relate the quantum channels and the mixed states of the

H 
 H E space. LetA be a channel, whose operator element set isf A i g, its

state representant is then

XA :=
�
A 
 I

�
j1iihh1j =

X

k

jAk iihhAk j : (2.18)

The above de�nition well exempli�es why is the complete positivity property

convenient in the case of superoperators. This ensures namely that the XA state

representant, as the mixed state identi�ed with the channelA also is a valid

density operator on theH 
 H E space. Comparing the (2.13) equation which

expresses the trace preserving property of the Kraus representation with equa-

tions (2.17) and (2.18), and noting thatTr H
�
jAyiihhAyj

� T
= Tr H E

�
jAiihhAj

�
,

the trace preserving property ofXA can be stated in the following condition:

Tr H E (XA ) = 1̂H 2 L (H) : (2.19)

The inverse of the map, i.e. theXA ! A relation assigning theA channel

to the XA superoperator is the following:

A (� ) = Tr H
�
(� T 
 1̂H E )XA

�
;
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2.3. Quantum channels

which I do not prove here.

2.3.1 Example channels

The depolarizing channel

Under the e�ect of the depolarizing channel a qubit will be depolarized

with probability p, i.e. it gets to the completely mixed state� = 1
2I , and with

probability 1 � p it remains intact. The parameter p of this channel is thus

indicates the strength of depolarization, and it is the onlyparameter of this

channel.

The Kraus operator elements of the channel are the following:

Ed;0 =

r

1 �
3
4

pI ; Ed;1 =
1
2

p
pX ; Ed;2 =

1
2

p
pY ; Ed;3 =

1
2

p
pZ : (2.20)

Note that because all the operator elements can be written asa Pauli

matrix or identity multiplied with a scalar factor, this channel belongs to the

more general class of Pauli channels.

The phase damping channel

The phase damping channel describes a type of noise de�ned exclusively

in quantum mechanics, the loss of quantum information independently from

energy. Such process is for example the random scattering ofa photon in an

optical �ber, or the disturbation of electron states originating from interactions

with distant charges. The phase damping channel also has only one parameter.

The Kraus operator elements of this channel:

Ep;0 =
p

pI =

 p
p 0

0
p

p

!

; Ep;1 =
p

1 � pZ =

 p
1 � p 0

0 �
p

1 � p

!

:

(2.21)

As can be seen from the form of the operator elements, this channel also is

a Pauli channel.

The amplitude damping channel

For the illustration of amplitude damping channel let us imagine an atom,

whose excited statej1i , and ground statej0i carries the information of one

qubit. During the e�ect of the channel, with probability  , the atom falls back

through spontaneous emission to the ground statej0i .

11



2. Basics of quantum information and parameter estimation

The Kraus operator elements of the channel can be written as:

Ea;0 =

 
1 0

0
p

1 � 

!

; Ea;1 =

 
0

p


0 0

!

: (2.22)

The form of the operator elements indicate that in contrast to the above

two channels, this channel is not a Pauli channel.

2.4 Methods of parameter estimation

In the �eld of system- and control theory, it is a common problem that we

have to search for the best model within a parameterized set of possible system

models. In other words, we have to choose the parameter so that the model

best approximates the property in question of the system. Thus, the parameter

estimation (or identi�cation) of dynamical systems is an important �eld. The

basic problem statement of parameter estimation is given inthe following.

Let us assume that the following are given:

ˆ A parametrized dynamical system model

ŷ = M (x; � ) 2 M � ;

whereM is a model form the set of possible modelsM � , x is the input,

ŷ is the predicted output computed by the model, and� is the parameter

vector.

ˆ A record of measurement data

D N = f
�
x(k); y(k)

�
; k = 0; : : : N g ;

wherey(k) is the true output of the system, corrupted by noise.

ˆ A suitable signal norm VN that measures theprediction error "(k; � )

describing the quality of the parameter estimation, i.e. the di�erence

between the model outputŷ and the measured true outputy of the

system:

VN = k"(k; � )k =
1
N

NX

t=1

`
�
" (k; � )

�
; (2.23)

where ` is a scalar-valued function. Formally the normVN functions as

a mapping from the measurement record setD N to the set of possible

12



2.4. Methods of parameter estimation

parameter values:D N ! �̂ N , where �̂ N corresponds to a model inM � .

Thus, the estimate �̂ N can be de�ned as the solution to the minimization

problem

�̂ N = arg min
�

VN (�; D N ) : (2.24)

2.4.1 Least squares estimation

The least squares (LS) method is very popular in parameter estimation,

because of its simplicity, and good statistical properties. The basis of the LS

method is the direct minimization of the prediction errory(k) � ŷ(kj� ), mea-

sured in a 2-norm.

This method uses the` function `(") = 1
2"2 in the loss function, thus

assuming the system model isf (k; � ), the signal normVN is the following:

VN =
1
N

NX

t=1

1
2

�
y(k) � f (k; � )

� 2
; (2.25)

An important property of the LS estimator is that if the system model is a

linear function of the parameters, then the estimator̂� N can be given explicitly,

without optimization. Furthermore, this method is a so-called o�ine method,

as it uses all the available measurement data and determinesthe estimator in

one step. On the other hand, if all the measurement data are not available at

once, but only gradually over time, or it is not possible to store all the data

together, then online methods are preferred. Such a method is for example the

recursive least squares algorithm.

2.4.2 Estimation based on classical and quantum infor-

mation

During parameter estimation, it is essential to be able to determine the

goodness of the estimator also in the parameter space. A quantity which can

be used for such purpose is the Fisher information, which re�ects the amount of

information that a measured random variable (i.e. the possible measurement

records) can carry about the parameter� . In other words, it measures the

accuracy of the unbiased estimator̂� N of � . This can be seen from the Cramér�

Rao bound:

Var( �̂ N ) � F (� )� 1 ;

13



2. Basics of quantum information and parameter estimation

whereF (� ) is the Fisher information matrix. This bound states that thevari-

ance of any unbiased estimator can not be smaller than the inverse of the Fisher

information, i.e. the higher the Fisher information, the better estimation we

can have. An unbiased estimator which achieves this lower bound is said to be

e�cient.

In classical statistics, the Fisher information is de�ned by the following

expression:

F (� ) =
Z

L(� jy)

 
@log

�
L(� jy)

�

@�

! 2

dy ;

where L(� jy) is the likelihood function, andy is the measured output. If the

parameter� is an n dimensional vector, then the Fisher information will be an

n � n matrix.

Let us consider now the quantum case. Let� � be a parametrized quantum

state, and let the probability distribution of the outcomesof the measurement

M = f M � g carried out on � � be denoted byp(� j� ), where � denotes the

measurement outcomes. According to (A.19) and (A.10) this can be computed

as

p(� j� ) = Tr( � � M � ) : (2.26)

Based on this, the(i; j )th element of the Fisher information matrix can be

written according to [14, 15] as

[F (�; M )]i;j =
X

�

@
@�i

p(� j� ) @
@�j

p(� j� )

p(� j� )
=

X

�

Tr
�

@��
@�i

M �

�
Tr

�
@��
@�j

M �

�

Tr
�
� � M �

� : (2.27)

Note that in the quantum caseF (�; M ) depends on the actual measurement

M with which the experiments had been performed. This rises the question

whether there exists a bound forF (�; M ), which depends only on the pa-

rameter? The answer was given by [16] by the quantum Cramér-Rao bound,

which states that no unbiased estimator of� can have smaller variance than

H (� )� 1, the inverse of theHelstrom quantum informationmatrix. [17] showed

that H (� ) is the maximal Fisher information, i.e. the following information

inequality holds for all possible measurements:

F (�; M ) � H (� ) : (2.28)
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2.5. Experiment design for parameter estimation

The Helstrom information can be de�ned in the following way:

[H (� )]i;j =
1
2

Tr
�
� � (L i L j + L j L i )

�
; (2.29)

where Lk is the symmetric logarithmic derivative (SLD) of � � , which is the

solution of the equality

_� � =
1
2

(L k � � + � � Lk) : (2.30)

2.5 Experiment design for parameter estimation

The purpose of experiment design in parameter estimation theory is to

choose the design variables such that the data setD N of experimental results

contain the most information with respect to the model setM � . In other words,

we should be able to discriminate any two di�erent models in the set.

Design variables may include

ˆ the choice of which signals are to be considered as inputs, and outputs,

i.e. where to manipulate the process and where to measure it,

ˆ the sampling interval, i.e. how often the signals are sampled or measured,

ˆ the type of input signals, mostly in relation with its second-order prop-

erties and its shape. The signals should excite the system and force it to

show its (possibly unknown) properties.

ˆ the number N of input-output measurements to be collected.

Formally, let all the design variables associated with the experiment be

denoted byX . Then the resulting�̂ N estimate converges to the limit� � (X ), and

the asymptotic covariance matrix of the estimate isP� (X ). These expressions

can be translated to other quantities of interest. Then we can say that the

modelM
�
� � (X )

�
is the best approximation of the real system under the chosen

X . If the model setM � contains the real systemS, then M
�
� � (X )

�
= S if X

is such that no other model is equivalent to the system underX .

Once X is chosen such that the limiting model� � (X ) is acceptable, then

it can become interesting to further selectX so that the covariance matrix

P� (X ) is minimized. This is the problem of optimal input design, which can

be stated as

min
X

�
�
P� (X )

�
;
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2. Basics of quantum information and parameter estimation

where � is the scalar measure of how large the matrixP is, and X is chosen

from the desings subject also to the constraints which the choice of design

variables discussed above might impose.

2.6 Convex optimization

In many engineering problems, such as control systems, estimation and

signal processing, communications and networks, electronic circuit design, data

analysis and modeling, convex optimization has a wide rangeof applications,

therefore it is an important sub�eld of mathematical optimization. Some very

popular methods also belong to the class of convex optimization problems,

such as least squares described in Section 2.4.1, and linearprogramming.

A convex optimization problem consists of the following elements:

ˆ A convex function f (x) : X ! R to be minimized over the variablex,

whereX is a convex subset of a real vector space.

ˆ Inequality constraints of the form gi (x) � 0, where the functionsgi are

convex.

ˆ Equality constraints of the form hi (x) = 0 , where the functionshi are

a�ne.

Thus the formal de�nition of a convex optimization (in particular mini-

mization) problem can be written as

min f (x) so that

gi (x) � 0; i = 1; : : : ; n

hi (x) = 0 ; i = 1; : : : ; m

The most important properties of a convex optimization problem are the

following:

ˆ If there exists a local minimum, then it is a global minimum.

ˆ The set of all global minima is convex.

ˆ If the function f is strictly convex, then there exists at most one mini-

mum.
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2.6. Convex optimization

Another important fact is that there are very e�cient numeri cal algo-

rithms to solve convex optimizaton problems. These are for example the ellip-

soid methods, the subgradient methods, the cutting-plane methods, and the

interior-point methods. There are also many solver programs available, a few of

them�the ones in particular that are free and can be used withMATLAB�are

SeDuMi, SDPT3, MOSEK, and SDPA. A short description and a comprehen-

sive benchmark of these and other solvers can be found in [18].

Finally, I mention that convex optimization is very useful in quantum me-

chanics, as many objects in quantum mechanics form convex sets, for example

probability outcomes, density operators, POVM elements, and Choi matrices.

17



Chapter 3

Quantum process tomography

In this chapter I present my work on quantum process tomography, starting

with the discussion of the nesessary theoretical principles.

3.1 The problem of quantum process tomogra-

phy

The problem of quantum process tomography (or channel estimation) can

essentially be formulated in two type of methods: direct, and indirect [1]. In the

indirect method, we trace the problem back to quantum state tomography, i.e.

the information about the unknown quantum channel is obtained by sending

known probe quantum systems through the channel, and performing state

tomography on the output states. The problem of quantum state tomography

is discussed shortly in Section A.5. In contrast, in the direct method, the

experiments directly give information about the channel, without the need for

a state tomography step. In this work, I will follow the indirect procedure,

mostly relying on the work [4].

The formal mathematical model of process tomography thus contains the

following elements:

ˆ A known � input density operator on the Hilbert spaceH of the system.

ˆ The unknown quantum channelE : H ! H , which is to be estimated.

The channel can be written for example in the Kraus representation, in

which case the output ofE is then by (2.12) � = E(� ) =
P

i Ei � Ey
i .

ˆ A POVM, i.e. an M = f M � g set of positive operators, with which we

can perform quantum measurement on the� channel output state.

18



3.1. The problem of quantum process tomography

Figure 3.1. The scheme of data collection for process tomography.

Note that we can use di�erent tomography con�gurations, i.e. di�erent input

states and POVMs in order to achieve better estimation onE. In this work,

the input-POVM pair corresponding to the th con�guration is denoted by � 

and M  .

3.1.1 Data collection

The �rst stage of process tomography is the collection of themeasurement

data into a measurement record. The measurements are performed in each

con�guration n times independently. This scheme can be seen on Figure 3.1.

In order to be able to uniquely identify the channel output state, an impor-

tant requirement in quantum process tomography is that the measurements

must be tomographically complete. This means that the measured POVM ele-

ments must form an operator basis on the Hilbert space of the system, so it can

provide all the information about the output state, and thuson the channel.

Such a set of measurement operators is sometimes called aquorum.

During data collection, the di�erent � outcomes of the measurements in the

con�guration  are counted in the variablec�; , and put in the measurement

record D. Then obviously X

�

c�; = n :

Thus, we have to perform a total number ofntot =
P

 n independent mea-

surements. The estimatorÊ of the channelE will be calculated from these

measurement outcomes, based on the formula (2.24).

3.1.2 Least Squares estimation

The next step of the tomography problem is to choose a suitable estimation

procedure. As I mentioned in Subsection 2.4.1, the least squares is a popular

method, because it is easy to implement, so in this work I usedit for pro-

cess estimation. The exact form of the LS objective functionfor the process

tomography problem is derived in the following.
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3. Quantum process tomography

If we write the �  = E(�  ) output of the channel in Kraus representation:

�  =
X

i

Ei �  Ey
i ;

then based on the statements in Section 3.1, the probabilitydensity function

of the measurement results will be

p (� ) = Tr
�
�  M �;

�
= Tr

 
X

i

Ey
i M �; Ei � 

!

: (3.1)

Note that this is a binomial distribution for �xed � and  .

In this expression, the optimization variables would be theKraus operator

elementsEi . However, as these do not form a convex set, the LS optimization

problem derived would be nonconvex. To overcome this di�culty, we can choose

the Choi matrix as optimization variable.

In order to achieve this, we can continue (3.1) using the relation (2.15) on

the Hilbert�Schmidt scalar product:

p (� ) =
X

i

Tr
�

Ey
i M �; Ei � 

�
=

X

i

hhMy
�; Ei jEi �  ii :

By (2.16) we get

X

i

hhMy
�; Ei jEi �  ii =

X

i

hhEi j(1̂ 
 My
�; )( � T

 
 1̂)jEi ii =

=
X

i

hhEi j(� T
 
 My

�; )jEi ii =

=
X

i

Tr

2

6
4(� T

 
 My
�; )

| {z }
R �;

jEi iihhEi j

3

7
5 =

= Tr(R �; � E) ;

where� E is the Choi matrix of the channelE.

Proceeding with the derivation of the objective function, an empirical es-

timation of the p (� ) probability can be given by the

p̂ (� ) =
c�;

n
(3.2)

relative frequency calculated from the measurement results.

If we assume that for this estimation E
�
p̂ (� )

�
= p (� ), and we know that
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the n measurements are independent, then the variance of the (3.2) empirical

estimate is known to be

Var
�
p̂ (� )

�
=

1
n

p (� )
�
1 � p (� )

�
:

Thus, for large n , p̂ (� ) ! p (� ) and Var
�
p̂ (� )

�
! 0, so p̂ (� ) is a good

estimate of the real valuep (� ). This leads to formulating the parameter esti-

mation problem as the following least squares objective:

arg min
�

X

�;

�
p̂ (� ) � Tr(R �; � E)

� 2
; (3.3)

so that � E � 0; Tr H E (� E) = 1̂H :

This problem is thus a convex optimization problem in the Choi matrix � ,

thus it can be solved easily using numerical algorithms.

3.2 Numerical solution

In this work, I considered the problem discussed in Subsection 2.4.1 for

the case of quantum processes acting on two level quantum systems (qubits).

For the solution I used MATLAB R2008b environment augmented with Maple

Toolbox for MATLAB software package, in which the optimization problem

(3.3) was solved using YALMIP optimization problem modeling language [19]

and the SDPT3 solver [20]. The MATLAB scripts made can be seenin Ap-

pendix B.

3.2.1 Generating measurement data

The �rst subtask of the process tomography is to obtain a realistic measure-

ment data record. For this purpose a function was implemented (see Subsection

B.1 in Appendix B), which takes the set of con�gurations, i.e. pairs of an input

density matrix �  and a set of POVM elementsM , furthermore the process

which has to be identi�ed in the form of a Choi matrix or Kraus operator

element set, and the vector of the number ofn experiments to perform in

each con�guration.

Using these inputs, the function generates the channel output states � , and

simulates quantum measurement on themn times for each con�guration.

Note that quantum measurements are probabilistic (see Section A.2), thus the
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3. Quantum process tomography

internal pseudo random number generator of MATLAB was used.

3.2.2 Setting up the tomography con�gurations

The aim of the simulation experiments was to analyze the performance of

the numerical optimization based estimation of quantum channels. The exper-

iments were set up as follows.

ˆ Two types of input states were used, a pure state and a mixed state, as

di�erent behaviour is expected based on previous works in the literature

of quantum tomography [21]. In the �rst type of experiments,one of

these was selected. Later, the case of multiple inputs was also considered

to see if it improves the quality of the estimation.

ˆ With the speci�ed input, the experiments were performed on one of the

three example quantum channels introduced in Subsection 2.3.1, with

two values of their parameters, i.e. two levels of channel strength were

considered.

ˆ As mentioned above, to obtain a tomographically complete measurement,

an operator basis on the Hilbert space of the system is required. A natural

choice for such a basis is the set of the three Pauli matrices from (2.3).

As each of these can be decomposed by (A.5) into a two element POVM,

three measurement con�gurations had to be used in the simplest case,

one for each direction corresponding to a Pauli matrix.

ˆ The total ntot number of measurements was distributed among the three

con�gurations equally, i.e. for each con�guration , an equal number of

n = 1
3ntot experiment were used. As this distribution applies for the

rest of this chapter, in the following the number of measurements in

any con�guration will be denoted simply by n. The experimental data

obtained this way was used as measurement record for processestimation

purposes.

Each experiment setup was repeated �ve times, and each of theestimated

process Choi matriceŝ� were analyzed using the following three estimation

performance measuring quantities:

ˆ Fidelity of the output states given by the true channel E and the es-

timated channel Ê, i.e. F (E(� ); Ê(� )) . This characterizes the estimation

quality in the state space. The �delity values obtained fromthe �ve re-

peated experiments were averaged.
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3.3. Results

ˆ The Hilbert�Schmidt distance of the true and estimated Choi matri-

ces, i.e. the Hilbert�Schmidt norm k� � �̂ k of the estimation error.

The Hilbert�Schmidt norm values obtained from the �ve repeated ex-

periments were also averaged. The Hilbert�Schmidt norm is the norm

associated with the Hilbert�Schmidt scalar product de�nedin (2.15).

ˆ The empirical covariance of the �ve estimates was also calculated. As the

Choi matrix is Hermitian, it has d4 = 16 free real parameters in principle

(d is the dimension of the system's Hilbert space). This however can be

reduced to d4 � d2 = 12 if we take the constraints of problem (3.3)

also into account. The covariance matrix was calculated based on these

parameters with the formula

1
11

12X

i =1

(ci � �c)(ci � �c)T ; where �c =
1
12

12X

i =1

ci ;

and the numbersci are the independent real parameters of the Choi

matrix. Finally, to obtain a single scalar value, the norm ofthe empirical

covariance matrix was taken.

I also have to mention, that as the experiments were performed with

channels which have only one independent parameter, and theobjective

(3.3) calculates with12 independent parameters, the problem is overpa-

rameterized, hence we can not expect to be able to recover that single

parameter of the channel from the optimal Choi matrix estimate �̂ .

3.3 Results

To investigate the dependence of the performance indicatorquantities on

the number of measurementsn in each con�guration, each of the experiments

were performed with increasingn values, until su�ciently small speed in the

convergence of the performance indicators was reached. This was measured

by comparing the variance of the last �ve values of each indicator quantity

to a given threshold level, which was chosen to be10� 6. If the experiment

did not reach the desired convergence speed in this sense even after n = 1000

measurements, then the experiment was terminated.

The performance indicator quantities for each experiment were plotted as

functions of the total number of measurementsn. The two channel strength

values were chosen to be� = 0:3 and � = 0:9 in case of the amplitude damping
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3. Quantum process tomography

and depolarizig channels. In case of the phase damping channel however, as it

can be seen from its de�nition in Subsection 2.3.1 a greater channel parameter

correspond to a weaker e�ect, so for a weak e�ect� = 0:7 and for a strong

e�ect � = 0:1 was chosen. On each plot, the blue graph always corresponds

to the weaker version of the channel, and the red graph corresponds to the

stronger.

For each of the experiment groups with pure, mixed and multiple input

states, the Bloch sphere indicating the trajectories of thechannel output states

as a function of the channel parameters was also plotted. On these, the red

line indicates the amplitude damping channel, the blue lineindicates the phase

damping channel, and the green line indicates the depolarizing channel. The

input state is marked with black circle at the common starting point of the

channels. The output states for� = 0:3 (� = 0:7 for the phase damping

channel) are marked with black dot, and the ones for� = 0:9 (� = 0:1 for the

phase damping channel) are marked with black cross.

3.3.1 Experiments with pure input state

The input state in these experiments was the pure state with the Bloch

vector

x =

r
1
3

2

6
4

1

1

� 1

3

7
5 :

The state and its trajectory as a function of the channel strength parameters

of the three example channels can be seen on Figure 3.2. The channel output

states for the three channels with both strength parametersare also depicted.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.3a, the �delity on Figure

3.3b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.3c.

It can be seen on the �gures that approximatelyn = 200 measurements

were enough in this experiment for each performance indicator to converge.

The Hilbert�Schmith norm shows that the stronger channel e�ect allowed a

better estimation. However it can be clearly seen also from the Hilbert�Schmith

norm, that though the e�ect of the channel could be reproduced very well (as
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3.3. Results

Figure 3.2. The Bloch sphere with the trajectories of the channel output states as a function
of the channel parameters for the experiments with pure input state. The red line indicates
the amplitude damping channel, the blue line indicates the phase damping channel, and the
green line indicates the depolarizing channel. The input state is marked with black circle at
the common starting point of the channels. The output states for � = 0 :3 (� = 0 :7 for the
phase damping channel) are marked with black dot, and the ones for � = 0 :9 (� = 0 :1 for
the phase damping channel) are marked with black cross.

it is shown by the �delity), but because of the overparameterization of the

problem, there are many�̂ estimates with the same channel e�ect, so the

channel parameter� could not be recovered, i.e. the mapping� ! � , where�

is the channel output could not be inverted. This behaviour can be seen also

in the following experiments with single input states.

The phase damping channel

The empirical covariance can be seen on Figure 3.4a, the �delity on Figure

3.4b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.4c.

In this experiment, a number ofn = 200 measurements was also enough,

however the in this case the weaker channel could be estimated better.

The depolarizing channel

The empirical covariance can be seen on Figure 3.5a, the �delity on Figure

3.5b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.5c.

In case of the depolarizing channel, as it can be seen from theHilbert�

Schmith norm, even fewer measurements gave a very good estimate, especially
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Figure 3.3. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the amplitude damping channel
with pure input state. The blue graph corresponds to � = 0 :3 and the red graph to � = 0 :9.
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Figure 3.4. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the phase damping channel with
pure input state. The blue graph corresponds to� = 0 :7 and the red graph to � = 0 :1.
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Figure 3.5. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the depolarizing channel with pure
input state. The blue graph corresponds to� = 0 :3 and the red graph to � = 0 :9.

in the case when the channel output was almost completely mixed.

3.3.2 Experiments with mixed input state

The input state in these experiments was the mixed state withthe Bloch

vector

x =
1
2

r
1
3

2

6
4

1

1

1

3

7
5 :

The state and its trajectory in function of the channel strength parameters

of the three example channels can be seen on Figure 3.6. The channel output

states for the three channels with both strength parametersare also depicted.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.7a, the �delity on Figure

3.7b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.7c.
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3. Quantum process tomography

Figure 3.6. The Bloch sphere with the trajectories of the channel output states as a function
of the channel parameters for the experiments with mixed input state. The red line indicates
the amplitude damping channel, the blue line indicates the phase damping channel, and the
green line indicates the depolarizing channel. The input state is marked with black circle at
the common starting point of the channels. The dash-dotted gray line helps to imagine the
position of the state inside the sphere, as it shows the direction of its bloch vector towards
the surface. The output states for � = 0 :3 (� = 0 :7 for the phase damping channel) are
marked with black dot, and the ones for � = 0 :9 (� = 0 :1 for the phase damping channel)
are marked with black cross.

We can observe in these �gures that the performance indicators (except

the �delity) converge slower, about 300 measurements are needed, and the

estimation in the case of the stronger channel is somewhat better.

The phase damping channel

The empirical covariance can be seen on Figure 3.8a, the �delity on Figure

3.8b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.8c.

In this case, we get worse performance compared to the experiment with

pure input. From other aspects, the two experiments are similar.

The depolarizing channel

The empirical covariance can be seen on Figure 3.9a, the �delity on Figure

3.9b and the Hilbert�Schmith norm k� � �̂ k of the estimation error on Figure

3.9c.

As in the case of pure state input, the depolarizing channel can again be

estimated very good in terms of Hilbert�Schmith norm.
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Figure 3.7. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the amplitude damping channel
with mixed input state. The blue graph corresponds to� = 0 :3 and the red graph to � = 0 :9.
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Figure 3.8. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the phase damping channel with
mixed input state. The blue graph corresponds to� = 0 :7 and the red graph to � = 0 :1.

29



3. Quantum process tomography

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50 100 150 200 250

jjc
ov

(�̂)
jj

n

(a)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

0 50 100 150 200 250

F
� Ê
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Figure 3.9. The empirical covariance can be seen on Figure (a), the �delity on Figure (b)
and the Hilbert�Schmith norm k� � �̂ k on Figure (c) for the depolarizing channel with
mixed input state. The blue graph corresponds to� = 0 :3 and the red graph to � = 0 :9.

3.3.3 Experiments with multiple pure input states

In these experiments, three pure states were used as input, each paired

with all three measurement directions, thus forming a totalnumber of nine

con�gurations. The total ntot number of measurements is thusntot = 9n, where

n is the number of measurements in each con�guration, as in theprevious

experiments.

The input states were the following pure states given with their Bloch

vector:

x1 =

r
1
3

2

6
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1

1

1
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The three input states and their trajectory in function of the channel param-

eters of the three example channels for the channel strength� = 0:3 (� = 0:7

for the phase damping channel) and� = 0:9 (� = 0:1 for the phase damping

channel) can be seen on Figure 3.10.
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(a) (b)

Figure 3.10. The Bloch spheres with the trajectories of the channel output states as a
function of the channel parameters for the experiments withmultiple pure input states.
The red lines indicates the amplitude damping channel, the blue lines indicates the phase
damping channel, and the green lines indicates the depolarizing channel. Each input state
is marked with black circle at the common starting point of th e channels. The output states
for � = 0 :3 (� = 0 :7 for the phase damping channel) on Figure (a), and the ones for� = 0 :9
(� = 0 :1 for the phase damping channel) on Figure (b) are marked with black cross.
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Figure 3.11. The empirical covariance can be seen on Figure (a) and the Hilbert�Schmith
norm k� � �̂ k on Figure (b) for the case of the amplitude damping channel with multiple
input states. The blue graph corresponds to� = 0 :3 and the red graph to � = 0 :9.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.11a and the Hilbert�

Schmith norm k� � �̂ k of the estimation error on Figure 3.11b. As there were

three input states, the �delity for each of them can be seen onFigure 3.12.

These �gures show that using multiple inputs can signi�cantly improve the

estimation performance, however, the performance indicators have a greater

deviation, and the convergence is slower. Approximatelyn = 500 measure-

ments are required for an acceptable level of error.

The phase damping channel

The empirical covariance can be seen on Figure 3.13a and the Hilbert�

Schmith norm k� � �̂ k of the estimation error on Figure 3.13b. As there were

three input states, the �delity for each of them can be seen onFigure 3.14.

In this case, similar comments can be made as in the case of theamplitude

damping channel.

The depolarizing channel

The empirical covariance can be seen on Figure 3.15a and the Hilbert�

Schmith norm k� � �̂ k of the estimation error on Figure 3.15b. As there were

three input states, the �delity for each of them can be seen onFigure 3.16.

The performance of this experiment is similar to the case of the amplitude

damping channel.
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Figure 3.12. The �delity for the amplitude damping channel with multiple inputs. Figure
(a) corresponds to the Bloch vectorx1, Figure (b) corresponds to the Bloch vectorx2, and
Figure (c) corresponds to the Bloch vectorx3.
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Figure 3.13. The empirical covariance can be seen on Figure (a) and the Hilbert�Schmith
norm k� � �̂ k on Figure (b) for the case of the phase damping channel with multiple input
states. The blue graph corresponds to� = 0 :7 and the red graph to � = 0 :1.
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Figure 3.14. The �delity for the phase damping channel with multiple inputs. Figure (a)
corresponds to the Bloch vectorx1, Figure (b) corresponds to the Bloch vector x2, and
Figure (c) corresponds to the Bloch vectorx3.
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Figure 3.15. The empirical covariance can be seen on Figure (a) and the Hilbert�Schmith
norm k� � �̂ k on Figure (b) for the case of the depolarizing channel with multiple input
states. The blue graph corresponds to� = 0 :3 and the red graph to � = 0 :9.

34



3.4. Discussion

0.8

0.85

0.9

0.95

1.0

1.05

1.1

0 50 100 150 200 250 300 350

F
� Ê

(�
);

E
(�

)�

n

(a)

0.8

0.85

0.9

0.95

1.0

1.05

1.1

0 50 100 150 200 250 300 350

F
� Ê
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Figure 3.16. The �delity for the depolarizing channel with m ultiple inputs. Figure (a) cor-
responds to the Bloch vectorx1, Figure (b) corresponds to the Bloch vectorx2, and Figure
(c) corresponds to the Bloch vectorx3.

3.4 Discussion

From the above experiments we can conclude the following. The number

of experiments needed to reach an acceptable error level wasapproximately

between200and 300 for the case of single inputs.

The quantity which proved to be the most useful in these experiments was

the Hilbert�Schmidt norm k� � �̂ k, as it di�ers almost in each case. Its value

however shows considerable error, which is the e�ect of the overparameterized

problem. In contrast, the �delity was quite similar in all experiments, showing

that�at least with respect to the actual input used�the chan nel e�ect could

be estimated very accurately.

It can also be seen that with pure inputs, more accurate estimation can be

carried out than with mixed input states. However, the depolarizing channel

proved to be easily estimated in each case, probably becauseits symmetric

behaviour.

In contrast to the single input case, for multiple inputs about n = 500

measurements was needed in each con�guration, but these type of experiments

signi�cantly increased the estimation performance.
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Chapter 4

Experiment design

In the following sections I will introduce the problem statement of experi-

ment design in the case of quantum process tomography based on the works of

[5, 14], then present my choice of speci�c design criteria, my work and �nally

the results.

4.1 The problem of experiment design

In the indirect approach of quantum process tomography, thedesign vari-

ables of the experiment are the input state, the measurement, the number

of measurements per con�guration, and the type of the estimator. The latter

however can be taken out of the picture, as the Cramér�Rao bound introduced

in Section 2.4.2 gives a lower bound on the estimator e�ciency (assuming it

is unbiased), namely the inverse of the Fisher information.Thus, the prob-

lem reduces to choosing the remaining three design variables such that they

minimize the lower bound, or equivalently, maximize the Fisher information.

From the above it is apparent that the experiment design problem is in fact

an optimization problem. This problem can be split into several subproblems,

each associated with a speci�c design variable. In my work, Ido not study the

case of the optimal input, nor the number of measurements as Iconsider only

one con�guration here. Thus, the task is to �nd the optimal measurement with

the input state �xed.

An important feature of this problem�as I mentioned in Secti on 2.4.2�is

that the Fisher information has an upper bound which is independent of the

measurement. This is the Helstrom quantum information. Thequestion of un-

der what circumstances is this bound attainable, is of considerable signi�cance

in the �eld of quantum information. In general, the optimal POVM depends
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4.1. The problem of experiment design

on the actual value of the unknown parameter� . Only in special cases does

one measurement strategy achieve the bound uniformly over� .

4.1.1 The qubit case

In this thesis, I only consider the the case of two level quantum systems (i.e.

qubits) and such channels that have one real and continuous scalar parameter

� whose value is known. As the input state is �xed in this problem, we can

determine the trajectory of the� (� ) channel outputs in function of the channel

parameter in the Bloch sphere, which allows us to calculate the Bloch vector

u(� ) and its derivative _u(� ) with respect to � for a given� (� ). It is known from

the literature [22] that the optimal measurement for which the Helstrom infor-

mation is attainable for a given� can be found in the plane spanned byu(� )

and _u(� ), and a simple projective measurement in this plane attains equality

if both outcomes have positive probability. My aim here is todetermine the

optimal measurement starting from pure and mixed input states, and compare

the results in the case of di�erent single parameter quantumchannels.

Thus in the case of qubits I search for the optimal measurement in the set

of all possible orthogonal pairs of spin directions, i.e. the possible antipodal

pairs of three dimensional vectors in the Bloch sphere, taking into account

that the optimal vector must be in the plane de�ned by the normal vector

n = u(� ) � _u(� ). As each direction in the Bloch sphere corresponds to a pure

state j ih j, and as density matrices are Hermitian so they can be validly

tought as observables, it is a natural choice to identify theoptimal direction

with the two element POVM fj  ih j; 1̂ � j  ih jg.

Based on the above, the operatorj ih j can be represented with a bloch

vector m = [ m1; m2; m3]T , thus the optimization problem for the optimal ex-

periment design can be formulated as

arg min
m

kH (� ) � F (�; M )k ; (4.1)

so that kmk = 1; mT n = 0 ;

where M is the two element POVM corresponding to the vectorm and n =

u(� ) � _u(� ) is de�ned above.

Unfortunately the problem in this form is not convex, thus to�nd its global

optimum is not guaranteed starting from an arbitrary initial solution. But this

drawback can be alleviated somewhat by searching through the state space

starting from several initial solutions. From the above, itis enough to consider
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the intersection of the Bloch sphere and the plane with the normal vector n.

Note that the Helstrom information of the system depends on the actual

Kraus representation of the system�which is not unique as mentioned in Sec-

tion 2.3�, and according to [5] with appropriate operator element set it can

be made as large as desired, thus it is sensible to search for the Kraus element

set which minimizes the Helstrom information. In this work however I do not

address this problem, but consider the Kraus representation �xed.

4.2 Numerical solution

For the numerical solution as in Chapter 3, MATLAB R2008b environment

augmented with Maple Toolbox for MATLAB software package was again used.

The numerical optimization however was performed with the general solver

fmincon, which is part of the built in Optimization Toolbox of MATLAB .

4.2.1 Calculation of Helstrom information

The solution of the above optimization problem involves �rst the calculation

of the Helstrom information. For this, a MATLAB function was made based on

the formula (2.29) (see Subsection B.2 for its code). The essential part of this

calculation is the solving of the equation (2.30), which is in fact a linear matrix

equation in the variableLk . According to [23] this equation can be transformed

into the following form:

�
(1̂ 
 � � ) + ( � T

� 
 1̂)
�
vec(Lk) = vec( _� � ) ;

wherevec(:) is de�ned as follows. LetA be ann � m matrix. Then vec(A) is

the m � n dimensional vector, which we get by stacking all the columnsof A on

top of one another. Thus, in this way, the matrix equation canbe transformed

into a linear equation system, which can be solved by MATLAB using the built

in methods.

4.2.2 The experiment setup

Secondly, a method is needed to search through the part of thestate space

which contains the feasible solutions, and start the optimization method from

several di�erent initial solutions. This can be done the following way. Starting

from the vectoru(� ), we rotate it around the axis appointed by the vectorn by
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some angle' chosen from the interval[0; 2� ]. The rotation algorithm consists

of the following steps:

ˆ Rotate the space around thez axis so that the rotation axis lies in the

x-z plane.

ˆ Rotate the space around they axis so that the rotation axis lies along

the z axis.

ˆ Perform the desired rotation by ' around the z axis.

ˆ Do the inverse of the second and then the inverse of the �rst step.

This way, if we perform the optimization for ' angles chosen su�ciently dense

in the interval [0; 2� ], the optimal measurement direction can be found almost

certainly. Based on some test calculations, the step of�10 radians had proven

to be enough for this purpose.

Thus, the experiments consisted of the following steps:

ˆ An input state was selected, either pure or mixed.

ˆ A channel was selected from the example channels in Subsection 2.3.1. I

considered each channel with two di�erent values of their parameters, one

corresponding to a weaker, and one corresponding to a stronger channel

e�ect.

ˆ The u(� ) Bloch vector, its _u(� ) derivative and the Helstrom information

H (� ) was calculated for the parameter value� .

ˆ The optimization problem was solved with di�erent initial solutions based

on the rotation of the angle' .

4.3 Results

As a result from the experiments, the optimal measurement direction for

which the Fisher information attains the Helstrom information for the given�

value was found.

The results were plotted on the Bloch sphere for each experiment. The

two channel strength values were� = 0:3 and � = 0:9, however based on

the argument in Section 3.3, the values for the phase dampingchannel were

chosen to be� = 0:7 and � = 0:1 also in these experiments. On each �gure, the

trajectory of the channel output states as a function of the channel parameter
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can be seen with green color. The input state is denoted by a red vector, and

the optimal measurement direction with a blue diagonal.

In each case, the optimal pair of antipodal Bloch vectors corresponding to

the optimal measurement direction is also given, with the value of the Hel-

strom information. The Fisher information, following from the optimality of

the measurements, has the same value.

4.3.1 Experiments with pure input state

The input state in this experiment was the pure state with theBloch vector

x =

r
1
3

2

6
4

1

1

1

3

7
5 :

The amplitude damping channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.1. The

case of parameter� = 0:3 is on Figure 4.1a, and the case of parameter� = 0:9

is on Figure 4.1b.

This case shows that as the state gets near to the surface of the Bloch

sphere, the optimal measurement direction also gets closerto the direction of

the Bloch vector of the channel output state. An experiment con�rming this

is described at the end of this subsection.

The Bloch vector pairs correspoding to the optimal POVM for this channel

are

for � = 0:3: �

2

6
4

0:690

0:690

0:212

3

7
5 ; and for � = 0:9: �

2

6
4

0:021

0:021

� 0:999

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 0:450 for the

weaker channel, and2:162 for the stronger.

The phase damping channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.2. The

case of parameter� = 0:7 is on Figure 4.2a, and the case of parameter� = 0:1

is on Figure 4.2b.
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4.3. Results

(a) (b)

Figure 4.1. The Bloch spheres with the trajectory of the channel output states as a function
of the channel parameters for the amplitude damping channelwith pure input state. The
channel trajectory is pictured with green color, the input state is denoted by a red vector,
and the optimal measurement direction with a blue diagonal. The weaker version of the
channel can be seen on Figure (a), and the stronger on Figure (b).
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4. Experiment design

(a) (b)

Figure 4.2. The Bloch spheres with the trajectory of the channel output states as a function
of the channel parameters for the phase damping channel withpure input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The weaker version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

Here we can also see in the case of the stronger version of the channel that

for a near pure state, the optimal measurement is near to the axis de�ned by

the channel output state.

The Bloch vector pairs correspoding to the optimal POVM for this channel

are

for � = 0:7: �

2

6
4

0:680

0:680

0:272

3

7
5 ; and for � = 0:1: �

2

6
4

0:615

0:615

� 0:492

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 3:174 for the

weaker channel, and7:407 for the stronger.

The depolarizing channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.3. The

case of parameter� = 0:3 is on Figure 4.3a, and the case of parameter� = 0:9

is on Figure 4.3b.

It can be clearly seen from the results for the depolarizing channel that it
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4.3. Results

(a) (b)

Figure 4.3. The Bloch spheres with the trajectory of the channel output states as a function
of the channel parameters for the depolarizing channel withpure input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The weaker version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

is very special in the sense that the optimal measurement direction for this

channel is always in the axis de�ned by the Bloch vector of theinput state.

Moreover, as the full trajectory of the channel in function of the parameter

� lies in this direction, the optimal measurement is the same for all values

of � , i.e. the Helstrom information can be attained by the Fisherinformation

uniformly over � . This result agrees with the ones described in [5].

The Bloch vector pairs correspoding to the optimal POVM for this channel

are

for � = 0:3: �

2

6
4

0:577

0:577

0:577

3

7
5 ; and for � = 0:9: �

2

6
4

0:577

0:577

0:577

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 1:960 for the

weaker channel, and1:010 for the stronger.

The case of almost pure output states

Here an example is shown for the case of the amplitude and phase damping

channels with � = 0:01, which means that the state is almost pure in each

case. As in the previous cases, the state, its trajectory as afunction of the
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4. Experiment design

(a) (b)

Figure 4.4. The Bloch spheres with the trajectory of the channel output states as a function of
the channel parameters for the case of almost pure channel outputs. The channel trajectory
is pictured with green color, the input state is denoted by a red vector, and the optimal
measurement direction with a blue diagonal. The amplitude damping channel can be seen
on Figure (a), and the phase damping channel on Figure (b).

channel parameter and the optimal measurement direction for these channels

are depicted on Figure 4.4a and 4.4b respectively.

These results clearly show that if the state is pure, then theoptimal mea-

surement direction is the direction of the Bloch vector of the channel output

state.

The Bloch vector pair correspoding to the optimal POVM for the amplitude

damping channel is

�

2

6
4

0:579

0:579

0:572

3

7
5 ;

and for the phase damping channel

�

2

6
4

0:581

0:581

� 0:569

3

7
5 :

The value of the Helstrom and Fisher information is equally4:679 for the

amplitude damping channel, and67:340 for the phase damping channel.
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4.3. Results

(a) (b)

Figure 4.5. The Bloch spheres with the trajectory of the channel output states as a function
of the channel parameters for the amplitude damping channelwith mixed input state. The
channel trajectory is pictured with green color, the input state is denoted by a red vector,
and the optimal measurement direction with a blue diagonal. The weaker version of the
channel can be seen on Figure (a), and the stronger on Figure (b).

4.3.2 Experiments with mixed input state

The input state in this experiment was the mixed state with the Bloch

vector

x =
1
2

r
1
3

2

6
4

1

1

� 1

3

7
5 :

The amplitude damping channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.5. The

case of parameter� = 0:3 is on Figure 4.5a, and the case of parameter� = 0:9

is on Figure 4.5b.

We can see in this case, that it is very similar to the case withpure input

state. It also can be seen again that for a near pure channel output, the optimal

measurement direction is close to the direction of the Blochvector of the

channel output state.

The Bloch vector pairs correspoding to the optimal POVM for this channel
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(a) (b)

Figure 4.6. The Bloch spheres with the trajectory of the channel output states as a function of
the channel parameters for the phase damping channel with mixed input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The weaker version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

are

for � = 0:3: �

2

6
4

0:122

0:122

� 0:984

3

7
5 ; and for � = 0:9: �

2

6
4

0:006

0:006

� 0:999

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 1:722 for the

weaker channel, and6:889 for the stronger.

The phase damping channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.6. The

case of parameter� = 0:7 is on Figure 4.6a, and the case of parameter� = 0:1

is on Figure 4.6b.

The Bloch vector pairs correspoding to the optimal POVM for this channel

are

for � = 0:7: �

2

6
4

0:706

0:706

� 0:051

3

7
5 ; and for � = 0:1: �
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4

0:703

0:703

0:102

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 0:686 for the
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4.3. Results

(a) (b)

Figure 4.7. The Bloch spheres with the trajectory of the channel output states as a function
of the channel parameters for the depolarizing channel withmixed input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The weaker version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

weaker channel, and0:754 for the stronger.

The depolarizing damping channel

The state, its trajectory as a function of the channel parameter and the

optimal measurement direction for this channel can be seen on Figure 4.7. The

case of parameter� = 0:3 is on Figure 4.7a, and the case of parameter� = 0:9

is on Figure 4.7b.

This experiment also shows the properties discussed in the case of pure

states.

The Bloch vector pairs correspoding to the optimal POVM for this channel

are

for � = 0:3: �

2

6
4

0:577

0:577

� 0:577

3

7
5 ; and for � = 0:9: �

2

6
4

0:577

0:577

� 0:577

3

7
5 ;

and the value of the Helstrom and Fisher information is equally 0:284 for the

weaker channel, and0:250 for the stronger.
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4.4 Discussion

The following conclusions can be drawn from the experimentsabove. The

optimal measurement direction for which the Fisher information attains the

Helstrom information for the given� value was found in each case.

We can see that the results do not depend signi�cantly on the input state,

rather on the shape and direction of the channel trajectory.The input only

seemed to a�ect the attainable Helstrom information.

If however the channel output was pure, or nearly pure then the optimal

measurement direction was always in the axis de�ned by the output state, or

it is near to that axis.

The case of the depolarizing channel was special, as the optimal measure-

ment direction for this channel was always in the axis de�nedby the Bloch

vector of the input state. From this, it follows that the optimal measurement

is the same for all values of� , i.e. the Helstrom information can be attained

by the Fisher information uniformly over the domain of the parameter.
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Chapter 5

Conclusion

5.1 Results

In this thesis, as the �rst main objective, the problem of quantum pro-

cess tomography for two level quantum systems was considered. A numerical

method based on convex optimization was de�ned and solved. The aim was to

test the performance of the method on pure input states, mixed input states,

and multiple pure input states.

In the tests, three estimation performance measuring quantities were used.

The �delity of the output states given by the true channelE and the estimated

channel Ê, the Hilbert�Schmidt distance of the true and estimated Choi ma-

trices and the empirical covariance of the estimates.

The results show that for channel estimation, about200 or 300 measure-

ment is nesessary, if only one input state is used. However, if multiple input

states are used, then more measurements are needed (about500), but the

estimation performance increases signi�cantly.

It can also be concluded, that with pure inputs, more accurate estimation

can be carried out than with mixed input states.

The second objective of this work was to derive and solve an optimization

problem on the experiment design of two level quantum systems for the case

of single parameter quantum channels.

In this work, the problem of �nding the optimal measurement was con-

sidered. The optimal POVM was identi�ed with an antipodal pair of Bloch

vectors, and the optimum was searched in this form. Experiments were per-

formed to investigate the behaviour of the optimum for pure and mixed input

states.

As a result from the experiments, it was found that in the the optimal
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5. Conclusion

measurement direction, the Fisher information always attains the Helstrom

information for the given parameter value.

The experiments also show that the results do not depend signi�cantly on

the input state, rather on the shape and direction of the channel trajectory. If

however the channel output is pure, or nearly pure, then the optimal measure-

ment direction is always in the axis de�ned by the output state, or it is near

to that axis.

The case of the depolarizing channel is special, as the optimal measurement

direction for this channel is always in the axis de�ned by theBloch vector of

the input state. For this channel the Helstrom information can be attained by

the Fisher information uniformly over the domain of the parameter.

5.2 Further work

The main objective for the continuation of this work is to extend the im-

plemented quantum process tomography and experiment design methods to

higher level quantum systems. It is not an easy task, as in thegeneral case,

the very expressive Bloch vector picture gets too complicated to remain useful

in practice. Therefore, some other parameterization is needed, which can be

used as easily in the general case, as in two level systems.

A second goal would be to take in account also the dependence on the input

state, and try to derive an experiment design method also forthe �nding of

the optimal input.

As I mentioned in Section 4.1, the optimal experiment designalso depends

on the actual Kraus representation of the channel. A furtherwork could be to

perform the minimization over the possible Kraus representations to achieve

some form of indepencende from the used operator element set.

Also in connection with the experiment design problem, the method pre-

sented in this work could be extended to be able to handle multiple tomography

con�gurations.
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Appendix A

Axiomatic principles of quantum

mechanics

The purpose of this appendix is a short overview, not the fulland mathe-

matically precise exposition of the axiomatic structure ofquantum mechanics.

In the following sections I mostly rely on the works of [7, 8].

A.1 States of quantum systems

In the mathematical model of quantum mechanics, the state ofthe system

is represented by a vector of theHilbert space. The conventional notation for

these is thej i Dirac �ket� symbol. Also by the Dirac notation, the scalar

product of two vectors is denoted byh' j i , where the h' j so-called �bra�

vector is the natural pair of j' i in the dual space.6 Actually, those vectors of

the Hilbert space, which di�er only in a nonzero scalar factor, describe the

same physical state, thus any state can be written with anormalized state

vector: k k = h j i 1=2 = 1.

As the sum of two vectors is also an element of the Hilbert space, the sum is

also a possible quantum state. In quantum mechanics, we callthis the principle

of linear superposition.

Any quantum state can be written as a linear combination of anarbitrary

orthonormal basis of the Hilbert space:

j i =
nX

i =1

� i ji i ; � i = hi j i 2 C ; (A.1)

6In the case of Hilbert spaces, the space and its dual can be identi�ed naturally through
the scalar product.
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A. Axiomatic principles of quantum mechanics

whereji i is the i th basis vector of the Hilbert space, and� i is the probability

amplitude of the basis stateji i , whose absolute square gives the probability

of the transition from the state j i to the basis stateji i . This gives that the

normality condition of state vectors can also be formalizedin the following

way:
nX

i =1

j� i j2 = 1: (A.2)

It is important that a j i vector multiplied by someei � (jei � j = 1) phase

describes the same physical state, in other words the description of the physical

state by a state vector is unique only apart from global phase. In case of two

superposed states however, the phase di�erence between thecorresponding

state vectors is relevant.

A.2 Measurement

In quantum systems theobservablesare represented by self-adjoint (or Her-

mitian) operators, which mathematically mean linear maps between vectors,

i.e.

A( � j i + � j' i ) = � Aj i + � Aj' i ; (A.3)

moreover the condition of self-adjointness:

h' jAj i = h jAj' i � ; (A.4)

where � denotes complex conjugation. For all self-adjoint operator there exists

a spectral decompositionin the following form:

A =
nX

i =1

mi Pi ; (A.5)

where Pi is a self-adjoint and idempotent projection operator, which realizes

the orthogonal projection onto the i th eigenspace. If this eigenspace is one

dimensional, then Pi = ji ihi j. The mi is the eigenvalue belonging to thei th

eigenspace, which is in all cases a real number, asA is Hermitian.

The connection between the result of the measurement of theA physical

quantity and the A operator belonging to theA quantity is the following. The

result of the measurement is always anmi eigenvalue, and the probability that
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A.2. Measurement

the outcome of the measurement will bemi is

h jPi j i = jhi j ij 2 ; (A.6)

and then the (normalized) state after the measurement will be the

Pi j i
p

h jPi j i
=

hi j i
jhi j ij

ji i = e i � ji i (A.7)

eigenstate. As hi j i
jhi j ij is a unit length complex number (global phase factor), we

can omit it.

Thus during the measurement thej i state changes, the measurement

makes it jump into one of theji i eigenstates of the measuredA physical quan-

tity's operator. Following from the properties of thePi projection, performing

the same measurement two times, if it resulted inmi for the �rst time, then

in the second time we will also getmi with 1 probability.

From the foregoing it also follows that if we want to know the expected value

of the measurement, or which is the same, the average of many measurements,

then the calculation method of this is the following:

hAi =
h jAj i
h j i

: (A.8)

The measurement formalism discussed above is calledprojective measure-

ment or von Neumann measurement. In some applications however, it is more

convenient to use a di�erent, more general type of measurement, called POVM

(Positive Operator Valued Measure).

The POVM can be de�ned by an f M i g set of positive operators, each of

which is related to the possible measurement outcomei , and which satisfy the

equation X

i

M i = 1̂ : (A.9)

The positivity of the operators ensure that all the outcome probabilities are

positive, and the constraint A.9 is necessary for these probabilities to have a

sum of1.

The probability that the outcome will be i is

h jM i j i ; (A.10)
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A. Axiomatic principles of quantum mechanics

and the state after measurement can be computed as

Qi j i
q

h jQy
i Qi j i

; (A.11)

whereQi =
p

M i is the operator associated with thei th outcome.

The POVM formalism is more general, because it describes also the pro-

jective measurement as a special case, when thef M i g set of POVM elements

are projections. However, it can be proven that the POVM and projective

measurements can be made equivalent in the sense that every POVM can be

realized by performing a projective measurement on a largersystem.

A.3 Time evolution

The time evolution of a closed quantum system can be described by a linear

di�erential equation, the Schrödinger equation. If we denote the state of the

system with j (t)i , then the Schrödinger equation is the following:

d
dt

j (t)i = �
i
~

Hj (t)i ; (A.12)

where ~ is the Planck constant, andH is the Hamiltonian, which is the self-

adjoint operator belonging to the energy as physical quantity.

The spectral decomposition of theH operator also can be written:

H =
nX

i =1

E i jei ihei j : (A.13)

Here we call thejei i states energy eigenstates, and theE i number is the energy

of the jei i state.

If H does not depend explicitly on time, then the energy eigenstates are

just the stationary statesof the system. In this case we can write the solution

of the Schrödinger equation in the a following form:

j (t)i = e � i
~ Ht j (0)i : (A.14)

This formula shows, in what �nal j (t)i state will the initial j (0)i state

get into after t time elapses, so the operator

U(t) = e � i
~ Ht (A.15)
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A.4. Open systems

in it is called time evolution operator. An important feature of this is unitarity,

as just an unitary operator can guarantee the condition thatif the initial state

was normalized, then the �nal state must also be normalized.This must be

true, as it can be seen from the comparison of the equations (A.2) and (A.6)

that the norm of the state can be obtained by summing all the probabilities of

a projective measurement's possible outcomes, and this obviously must be1.

If there are time dependent external �elds present, and thusthe Hamilto-

nian of the system explicitly depends on time, then the connection of U(t) time

evolution operator andH(t) can only be described a litte more complicated

than formula (A.15), but unitarity�as it does not a�ect the r easoning in the

previous paragraph�will continue to remain true.

Thus we can see that the state of a closed quantum system behaves de-

terministically in time, as long as we do not perform a measurement on it.

The result of the measurement is completely random, so afterthat the state

already evolves nondeterministically, according to the probabilisticness law of

quantum mechanics it jumps into an eigenstate.

A.4 Open systems

Until now, I only considered closed systems. But in reality,a quantum sys-

tem can never be perfectly closed. The interaction with the environment (other

systems), from which noises, disturbances arise, is thus a�ects the system.

If we want to study an open system, we can consider the system closed

together with its more or less wide environment. The state space of composite

systems can be obtained as the tensor product of the state spaces of the sub-

systems, i.e.H AB = H A 
 H B , whereH A and H B is the Hilbert space of the

two subsystem. The dimension ofH AB is the product of the dimensions of the

H A and H B spaces. An arbitrary state of theH AB space can be written in the

following way:

j	 i =
X

i;j

� ij � j i i 
 j j i ; or in short j	 i =
X

i;j

� ij � j ij i ; (A.16)

where fj i ig and fj j ig are orthonormal bases for the Hilbert spacesH A and

H B .

In reality, the description of the bigger system composed from two sub-

systems in quantum mechanics holds a lot more curiosity and strange com-

plication, than we would think at the �rst glance. For example, let us take a
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A. Axiomatic principles of quantum mechanics

bipartite system, whose both subsystems are two-state, i.e. has two mutually

orthogonal states, which we denote withj0i and j1i . As it is a possible state

of the system that both subsystems are in the statej0i , and it is also possible

that both are in the state j1i , according to the law of superposition

j	 i = � 00j0i 
 j 0i + � 11j1i 
 j 1i (A.17)

is also a possible state. We call such a state theentangled state of the two

subsystems, or otherwise we say that the state of the two subsystems are cor-

related. The meaning of this typically quantum mechanical correlation is the

following. Let us assume that we measure the �rst subsystem to decide if it is

in the j0i or in the j1i state. We can do this with an appropriately choosen

physical quantity, and according to the precedingly discussed rules, we get that

with j� 00j2 probability it is in the state j0i , and with j� 11j2 probability, it is

in the state j1i . At the same time however according to the rule (A.7) the

measurement changes the state (A.17), and after the measurement the state

of the full system will either bej0i 
 j 0i (with j� 00j2 probability) or j1i 
 j 1i

(with j� 11j2 probability). Thus the measurement performed on the �rst subsys-

tem changes also the state of the second subsystem!7 If after this we measure

the state of the second subsystem, then we will �nd it quite certainly in the

state, in which the �rst subsystem also was. We call thisquantum correlation,

and quantum information in turn is that by the �rst measurement we get in-

formation also on the state of the second subsystem, withoutperforming any

measurement on it.

In the case of bipartite systems it is very common, that we areonly inter-

ested in the behaviour of one of the subsystems, or maybe we are only able

to perform measurement on one of them. Assume for example that the other

subsystem is very far away, or it is so complex, that we can notdetermine

its state precisely. In theory the state vector of the full system exist, only in

practice we do not know it or we are not interested in it.

Let us again take the example of the bipartite state (A.17). On the �rst

subsystem, we perform a measurement relating to anA attribute, let the oper-

7The weirdness in this is that during the measurement, the twosubsystems can be at any
distance form each other, still in the moment of measurementthey both change. This is the
basis of Einstein, Podolsky and Rosen's famous argument, bywhich quantum mechanics can
not be a good description of nature, as by what reason would the state of a system lightyears
away changeinstantly just beacuse we performed a measurement on another system. In the
last one or two decades however physicists managed to perform such measurements, and
according to all indications the predictions of quantum mechanics match reality, despite
how strange it is.
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A.4. Open systems

ator of this be A, the operator acting on the state space of the �rst subsystem.

As this physical quantity does not depend at all on the state of the second sub-

system, it is described by theA 
 1̂ operator acting on the state space of the

composite system. The expected value of this measurement can be calculated

based on formula (A.8). Assuming that (A.17) is normalized,we get that

h	 jA 
 1̂j	 i = j� 00j2h0jAj0i + j� 11j2h1jAj1i : (A.18)

We would get the same result if we assume that the �rst subsystem is in state

j0i with j� 00j2 probability, and in state j1i with j� 11j2 probability. As this

expression is true for the measurement of an arbitraryA quantity related to

the �rst subsystem, we can interpret the result also as if the�rst subsystem

would be in the suitably weighted statistical mixture of thestatesj0i and j1i ,

using proper terminology, in theensembleof these two states. Furthermore it

can be shown that (A.18) gives exactly the same as the

hAi = Tr( � A) ; (A.19)

expression, where

� = j� 00j2j0ih0j + j� 11j2j1ih1j : (A.20)

All this means that the information that can be gained from all possible

measurements related to the �rst subsystem is contained in the operator � ,

which we calldensity operator.

All this can be generalized to an arbitrary open system, to which the state

vector formalism can no longer be applied directly without the detailed de-

scription of the state of the environment. In such case namely the states can

not be represented by the vectors of the Hilbert space, furthermore the mea-

surement can not be described by orthogonal projection, neither is the time

evolution unitary. In case of open systems thus we must use another, more

appropriate mathematical tool, this is thedensity operator formalism.

With the help of density operators (or density matrices) the axioms of

quantum mechanics can be formulated in the same way in the case of closed

systems, as with state vectors. The di�erence between the two descriptions

resides in the fact that with density matrices we can handle also open systems

with ease.

The general de�nition of the density operator is the following. If the open
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A. Axiomatic principles of quantum mechanics

system taken together with its environment is in the

j	 i =
X

i;j

� ij ji i 
 j j i (A.21)

normalized state, then the density operator describing thestate of the �rst

subsystem:

� = Tr H 2 (j	 ih	 j) �
X

i;j;k

� ik � �
jk ji ihj j : (A.22)

The Tr H 2 notation has to be interpreted such that we get the density operator

describing the state of the �rst subsystem as the partial trace of the j	 ih	 j

operator, applied to the degrees of freedom of the second subsystem (environ-

ment).

For example it can immediately be seen that the density operator of a

closed system in the statej i is the following projection:

� = j ih j : (A.23)

The general properties of the density operator:

ˆ The trace of its matrix is 1, i.e Tr( � ) = 1 ,

ˆ Self-adjoint, i.e. � = � y,

ˆ Positive semide�nite, i.e. for all j i h j� j i� 0.

From all this it follows that � can be diagonalized, and its eigenvalues are real,

nonnegative and sum to1. The density operator is thus can always be brought

to the following form:

� =
X

k

wk � jkihkj : (A.24)

Similarly to what was said above on the example of the composite system de-

scribed with the state vector (A.17), this can be interpreted such that the wk

eigenvalues give the probability that the system is in the state jki . The density

operator can thus be understood as if it described thestatistical mixture, en-

semble of pure states. If eitherwk probability is 1, and the others are0, then

the system is inpure state, i.e. can be described solely with the corresponding

jki state vector (see equation (A.23)). In case of pure state� is idempotent,

i.e. � 2 = � , and hence it also holds thatTr( � 2) = 1 . In any other case we call

the state mixed.
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A.4. Open systems

An important example of using the density operator is the description of

projective measurement. As I said in subsection A.2, after the measurement the

system with initial state j i will be in one of the eigenstates of the measured

quantity. That in exactly which, we know by reading the measured value from

the measuring device, which value is an eigenvalue of the measured quantity's

operator, and the eigenstate related to this eigenvalue describes the system

after measurement. But if we do not read the device (as for example we can

not do that), just simply know, that a measurement was performed, then we

know that the system can be written as the statistical ensemble of the (A.7)

eigenstates taken with (A.6) weights, i.e. the initial� = j ih j density operator

goes into the following� 0:

� 0 =
X

i

Pi � Pi : (A.25)

It is easy to see that this formula is true even if the system was not in a pure

state before the measurement.

The time evolution of the density operator given with formula (A.23) of a

closed system can be described easily by theU unitary time evolution operator

resulting from the solution of the Schrödinger equation:

� (t) = U( t)� (0)Uy(t) :

The time evolution of subsystems of composite systems by themselves do

not nesessarily happen unitarily, so it can not be describedwith the above

formula. But the state of the subsystem can obviously be given with a den-

sity operator further on, so we can describe time evolution as a map taking

density operator to density operator. Because of the general properties of the

density operator this map has to be such, that it preserves the trace and posi-

tive semide�niteness of the operator. Such maps between operators are called

superoperators.

Sometimes it is nesessary to be able to handle a mixed state described by a

density operator with state vectors. Then we have to take thesystem together

with its environment, and �nd such state of this bigger system, which according

to de�nition (A.22) just leads to the desired � density operator. This is called

the puri�cation of the mixed state. The procedure is of course not unique, the

system and its environment as a whole can have many states which give the

same mixed state of the system.
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A.5 The quantum state tomography problem

As it was discussed in Section A.2, the quantum measurement acts as dis-

turbance on a quantum mechanical system, moreover it is probabilistic. Thus

if one measures a certain quantum system it is not possible tohave enough

information from a single measurement. Furthermore, a second identical mea-

surement on the same system cannot be performed since the �rst measurement

changed the state so we need a somawhat relaxed problem statement for state

tomography.

In order to avoid the above di�culties we will assume that su� ciently many

identical copies of the system is available for measurement. This way, we can

perform measurements on each one of the identical quantum systems, that is

each system is measured only once and the next measurement isperformed on

the next copy [24]. This makes the state of the system after the measurement

irrelevant, and we can also omit the system dynamics thus e�ectively the task

is reduced to a parameter estimation problem.

The goal of state tomography in this context is to determine the density

operator � of a quantum system by performing measurements onn identical

copies of the quantum system. The numbern corresponds to the sample size in

classical mathematical statistics. An estimation scheme is then a collection of

measurements and an estimate for everyn. In e�ect the estimate is a mapping

de�ned on the measurement data and its values are density operators. For a

reasonable scheme, we expect the estimation error to tend to0 when n tends

to in�nity (i.e. we expect to have an asymptotically unbiased estimate) as a

consequence of the law of large numbers.
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Appendix B

MATLAB scripts

B.1 Scripts for quantum process tomography

GetProcessData.m

0 function D=GetProcessData ( c o n f i g s e t , p rocessS , paramset , exprve c )

%================================================== ==

%Generates measurement data for process tomography. (qubit c ase: n=2)

%

%con�gset: Set of input states and corresponding measurement operators

5 % (ncfgx2 cell of nxn matrices in �rst column and 1x(max npovm) cells

% of n� n matrices, npovm: number of outcomes) (there are not nesessar ily

% npovm elements in a povm, can be less)

%processS: Parametrised operator element sets or Choi matrix of process,

% ncfg: number of con�gurations)

10 %paramset: contains parameters and their estimated values

% (mx2 cell of (symbol,scalar) pairs)

%exprvec: Vector of experiment numbers in each con�guration

% (input, state/process, povm) (ncfgx1 matrix)

%

15 %D: Set of measurement outcomes: D(j,k)=count of k-th outcome in j -th

%con�guration (ncfg � 1 cell of 1� (max npovm) matrices)

%================================================== ==

n= length ( c o n f i g s e t { 1 } ) ; % dimension of system

nc fg= length ( exprvec ) ;

20

%check completeness relation for povm-s

where E_i=M_i' *M_i)

for j =1: nc fg

sum= zeros (n ) ;

25 for k=1: length ( c o n f i g s e t { j , 2 } )

sum=sum+c o n f i g s e t { j , 2 } { k } ;

end

i f ( norm (sum� eye (n ) , ' f r o ' )>10^ � 9) % this is a precision threshold

error ( 'POVM s e t  %d does  not  s a t i s f y  comp le teness !  . . .

30 Error  i s  %e ' , j , norm (sum� eye (n ) , ' f r o ' ) ) ;

end

end
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% de�ne measurement output set

35 D=c e l l ( ncfg , 1 ) ;

for j =1: nc fg

D{ j }= zeros (1 , length ( c o n f i g s e t { j , 2 } ) ) ;

end

40 % substitute process parameters

p r o c e s s=S u b s t i t u t e ( processS , paramset ) ;

% get output states from process

ou tpu tse t=c e l l ( ncfg , 1 ) ;

45 for j =1: nc fg

ou tpu tse t { j }=Process ( p rocess , c o n f i g s e t { j } ) ;

end

for j =1: nc fg

50 for k=1: exprvec ( j ) % measure exprvec(j) times

ex=Measure ( ou tpu tse t { j } , c o n f i g s e t { j , 2 } ) ;

D{ j } ( ex)=D{ j } ( ex )+1;

end

end

55

end

function m=Measure ( s ta te , povm)

%rand('state',sum(100*clock));

60 r= rand ;

s t a r t =0; %start of interval [0,1], which is partitioned to parts ...

wi th length p r o p o r t i o n a l to the outcome p r o b a b i l i t i e s

for j =1: length (povm)

p= trace (povm{ j }* s t a t e ) ;

65 i f ( r<=s t a r t+p ) % if r is in interval start+p, then r falls ...

i n t o par t o f p , so the j � th outcome measured .

m=j ;

break ;

end

70 s t a r t=s t a r t+p ;

end

end

ProcessTomography.m

0 function [ so l , Xopt]=ProcessTomography (D, c o n f i g s e t , va ra rg i n )

%================================================== ==

%Estimates scalar channel paramter (or Choi-matrix X) of a proc ess from the following:

%

%D: Data set of measurement results (ncfgx1 cell of 1x(max npov m) matrices,

5 % ncfg: number of con�gurations)

%con�gset: Set of input states and measurement operators (ncf gx2 cell of

% nxn matrices in 1st column and of 1xnpovm cell of nxn matrices in 2nd column)

%

%sol: Solution to the optimization problem (minimum of log-lik elihood function)

10 %Xopt: Optimal estimator Choi-matrix of the unknown process

%================================================== ==

n= length ( c o n f i g s e t { 1 } ) ; % dimension of system

nc fg= s ize ( c o n f i g s e t , 1 ) ; % number of con�gurations
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15 i f ( nargin <3) % if no YALMIP con�guration is given

s i l e n t =0;

X=sdpvar (n^2 ,n^2 , ' he rmi t ian ' , ' complex ' ) ; % The choi matrix as variable

CONS= set (X>=0, ' P o s i t i v e  s e m i d e f i n i t e ' )+ . . .

set ( Pa r t i a lT race (X,2 , [ 2 ,2 ] )== eye ( 2 ) , ' Trace  p r e s e r v i n g ' ) ;

20 s e t t i n g=s d p s e t t i n g s ( ' s o l v e r ' , ' sdpt3 ' , ' ve rbose ' , 1 , . . .

' showprogress ' , 0 , ' c a c h e s o l v e r s ' , 1 , ' a l lownonconvex ' , 1 , . . .

' sdpt3 . gap to l ' ,1 e � 9, ' sdpt3 . sca le_data ' , 1 ) ;

e lse

X=va ra rg in {1 } ;

25 CONS=va ra rg in {2 } ;

s e t t i n g=va ra rg in {3 } ;

end

ob j =0;

30 for j =1: nc fg

for k=1: length ( c o n f i g s e t { j , 2 } )

pemp=D{ j } ( k ) / sum (D{ j } ) ;

R= kron ( c o n f i g s e t { j } . ' , c o n f i g s e t { j , 2 } { k } ) ;

ob j=ob j+(pemp � trace (X*R) ) ^ 2 ;

35 end

end

so l vesdp (CONS, obj , s e t t i n g ) ;

s o l=double ( ob j ) ;

Xopt=double (X) ;

40 end

B.2 Scripts for experiment design

HFoptimize.m

0 function [H, F , povm , paramsopt ]=HFoptimize ( bloch , pval , i n i t , p re c )

% Specify input state

input =Bloch2Densi ty ( bloch , 1 ) ;

global outS paramset H

5

syms p

% Specify process

Amp{1}=[1 0 ;0 sqrt (1 � p ) ] ; % Amplitude damping

Amp{2}=[0 sqrt ( p ) ; 0 0 ] ;

10

Pha{1}= sqrt ( p )* eye ( 2 ) ; % Phase damping channel

Pha{2}= sqrt (1 � p ) * [ 1 , 0 ; 0 , � 1 ] ;

Dep{1}= sqrt (1 � 3/4*p )* eye ( 2 ) ;

15 Dep{2}= sqrt ( p / 4 ) * [ 0 , 1 ; 1 , 0 ] ;

Dep{3}= sqrt ( p /4)* [0 , � 1 i ; 1 i , 0 ] ;

Dep{4}= sqrt ( p / 4 ) * [ 1 , 0 ; 0 , � 1 ] ;

% Parameter values

20 paramset={p , pva l } ;

p rocessS . op=MakeChoi (Amp) ;
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processS . domain = [ 0 , 1 ] ;

25 outS=Process ( processS , input ) ;

out=S u b s t i t u t e ( outS , paramset ) ; % get the normal of the plane

d i f S= d i f f ( outS ) ;

dout=S u b s t i t u t e ( d i fS , paramset ) ;

30 bout=Densi ty2Bloch ( out ) ;

bdout=Densi ty2Bloch ( dout ) ;

n= cross ( bout , bdout ) ;

H=CalcHelstrom ( outS , paramset ) ;

35

% Constraints

A= [ ] ; % Inequality constraints A*x <= b

b = [ ] ;

Aeq=n . ' ; % Equality constarints Aeq*x = beq

40 beq=0;

lb = [ ] ; % Bound constraints lb <= x <= ub

ub = [ ] ;

non l i n=@Nonlin ; % Nonlinear constraints (see help)

45 % Initial solution (does not matter if objective is convex)

i n i t=i n i t / norm ( i n i t , ' f r o ' ) ;

op ts=opt imset ( ' D isp lay ' , ' o f f ' , ' FunValCheck ' , ' on ' , ' T olFun ' ,10^ � 9); % iter

50 count =0;

g lob=i n f ;

num=0;

popt = [ 0 , 0 , 0 ] ;

55 DrawBloch ;

l o c a l = [ ] ;

for phi =0:( pi / p rec ) : 2 * pi

idx =1;

i n i t=Rotate ( bout , n , ph i ) ;

60

[ paramsopt , s o l ]= fmincon ( @FisherObj , i n i t ,A, b , Aeq , beq , lb , ub , non l in , op ts ) ;

paramsopt=paramsopt / norm ( paramsopt , ' f r o ' ) ;

l i nemat =[ i n i t . ' ; paramsopt . ' ] ;

l i ne ( l inemat ( : , 1 ) , l i nemat ( : , 2 ) , l i nemat ( : , 3 ) , ' Color ' , [ 0 , 0 , 0 ] / 2 5 5 ) ;

65 drawnow

for j =1: length ( l o c a l )

i f ( abs ( l o c a l ( j ) � s o l )<10^ � 8)

idx =0;

break

70 end

end

i f ( idx >0)

num=0;

fp r in t f ( ' \nFound l o c a l  minima :  %f \n ' , s o l ) ;

75 l o c a l ( end +1)= s o l ;

DrawDiagonal ( paramsopt ) ; % to see where local minimas are

drawnow ;
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80 end

i f ( so l <g lob )

g lob=s o l ;

popt=paramsopt ;

end

85 count=count +1;

for j =1:num, fp r in t f ( ' \b ' ) ; end

num= fp r in t f ( ' P rocess ing  %d ,  ang le=%f  g l o b a l  s o l u t i o n  i s  %f ' , . . .

count , ph i *180/ pi , g lob ) ;

end

90 f p r i n t f ( ' \n ' ) ;

paramsopt=popt ;

s o l=g lob ;

F=H � s o l ;

95 paramsopt=paramsopt / norm ( paramsopt , ' f r o ' ) ;

den=Bloch2Densi ty ( paramsopt ) ;

povm={den , eye (2) � den } ;

% Drawing

100 DrawBloch ;

DrawProcess ( processS ,input , 5 0 ) ;

out=double ( subs ( outS , p , pva l ) ) ;

DrawState ( out , ' � ' , [ 2 5 5 , 0 , 0 ] ) ;

DrawDiagonal ( paramsopt . ' ) ;

105 end

function D=FisherObj ( povmparams )

%================================================== ==

%Calculates Fisher information matrix for a parameterised de nsity

110 % matrix with given POVM set.

%

%rhoS: parameterised density matrix (n � n symbolic matrix)

%povm: the cell array containing POVM elements to measure

% (Fisher information depends on the measurement)

115 %paramset: contains parameters and their estimated values

% (m � 2 cell of (symbol,scalar) pairs)

%================================================== ==

global outS paramset H

120 rhoS=outS ;

rho=S u b s t i t u t e ( rhoS , paramset ) ;

m=1;

elem1=Bloch2Densi ty ( povmparams , 1 ) ;

125 elem2=eye (2) � elem1 ;

elem1=elem1 ' * elem1 ;

elem2=elem2 ' * elem2 ;

povm={elem1 , elem2 } ;

130

Fmat= zeros (m^2) ; % Fisher matrix

for p1=1:m

drhoS= d i f f ( rhoS ) ;

drho1=S u b s t i t u t e ( drhoS , paramset ) ;

135

for p2=1:m
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drhoS= d i f f ( rhoS ) ;

drho2=S u b s t i t u t e ( drhoS , paramset ) ;

140 % make Fisher matrix element for parameter indices p1 and p2

f =0;

for a=1: length (povm)

i f ( norm (povm{a } , ' f r o ' )<10^ � 9)

con t inue ;

145 end

f=f +( trace (povm{a}* drho1 )* trace (povm{a}* drho2 ) ) / trace (povm{a}* rho ) ;

end

Fmat( p2 , p1)= f ;

end

150 end

D= norm (H� Fmat , ' f r o ' ) ;

end

function [ c , ceq ]= Nonl in ( x )

155 c = [ ] ; % Compute nonlinear inequalities at x.

ceq=norm (x , ' f r o ' ) � 1; % Compute nonlinear equalities at

end

CalcHelstrom.m

0 function [H, acc ]= CalcHelstrom ( rhoS , paramset )

%================================================== ==

%Calculates Helstrom matrix for a parameterised density matr ix.

%

%rhoS: parameterised density matrix (n � n symbolic matrix)

5 %paramset: contains parameters and their estimated values

% (m � 2 cell of (symbol,scalar) pairs)

%================================================== ==

%n=length(rhoS); acc=zeros(1,3);

m= s ize ( paramset , 1 ) ;

10

rho=S u b s t i t u t e ( rhoS , paramset ) ; % Get numerical value of rho

H= zeros (m^2) ; % Helstrom matrix

for p1=1:m

15 [ L1 , accuracy ]=SolveSLD ( rhoS , paramset , p1 ) ; % SLD

acc=acc+accuracy ;

for p2=1:m

[ L2 , accuracy ]=SolveSLD ( rhoS , paramset , p2 ) ;

20 acc=acc+accuracy ;

% make Helstrom matrix

H( p2 , p1)=1/2* trace ( rho *(L1*L2+L2*L1 ) ) ;

end

25 end

acc=acc / s ize ( paramset , 1 ) ^ 2 ; % average reciprocal condition number

end

30 function [ L , acc ]=SolveSLD ( rhoS , paramset , idx ) % works generally

%================================================== ==
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%Solves symmetric logarithmic derivative equation 2*drhoS =L*rhoS+rhoS*L

% numerically. The parameters are symbolical, but get substitute d with

% param value after getting the derivative.

35 %

%paramset: contains parameters and their estimated values

%idx: index of the parameter, with respect to which we calcula te SLD

%

%The algorithm works by transforming the equation into A*vl=v d form

40 % (so that Matlab could solve it), where

%

%

%acc: Accuracy of computed L. This vector is the reciprocal cond ition

% number and the maximal absolute element of 2*drhoS-(L*rhoS+r hoS*L).

45 %================================================== ==

n= length ( rhoS ) ; % dimension of the rho matrix

% calculate derivative of rho, and substitute parameters

drhoS= d i f f ( rhoS , paramset { idx , 1 } ) ;

50 drho=S u b s t i t u t e ( drhoS , paramset ) ;

rho=S u b s t i t u t e ( rhoS , paramset ) ;

% build coe�cient matrix A

A= kron ( eye (n ) , rho)+ kron ( rho . ' , eye (n ) ) ;

55 acc (1)= rcond (A) ;

acc (2)= norm (A/A � eye (n^2) , ' f r o ' ) ; % A/B=A*inv(B), but inv is slow

% build vector vd

vd=drho ( : ) ;

60

% solve equation

v l=A\(2* vd ) ;

% extract L form vl

65 L= reshape ( v l , n , n ) ;

% check if L satis�es original equation

acc (3)= norm (2* drho � (L* rho+rho *L ) , ' f r o ' ) ;

end

B.3 Auxiliary scripts

Bloch2Density.m

0 function d e n s i t y=Bloch2Densi ty ( b lochvec , l en )

%================================================== ==

%Transforms a Bloch vector into a density matrix (currently f or qubits)

%

%blochvec: lengths of three Bloch ball dimensions (x,y,z). Only the

5 % x:y:z rate is important, as the function automatically norma lizes

% the vector to second parameter (len).

%len (optional): length of Bloch vector. Give 1 for pure state s.

%================================================== ==

i f ( nargin ==1)

10 l en = � 1;

end
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i f ( len >=0)

b lochvec=b lochvec /FrobeniusNorm ( b lochvec )* l en ;

end

15 i f ( ( strcmp ( c l a s s ( b lochvec ) , ' sym ')==0)&& . . .

( FrobeniusNorm ( b lochvec ) � 1>10^ � 9))

error ( ' I n v a l i d  s t a t e ! ' ) ;

e l s e i f ( strcmp ( c l a s s ( b lochvec ) , ' sym ' )==1)

warning ( ' i d ' , 'Can not  check  v a l i d i t y  o f  symbol ic  ve c to r ! ' ) ;

20 end

d e n s i t y =1/2*[1+ b lochvec ( 3 ) , b lochvec (1) � 1 i * b lochvec ( 2 ) ; . . .

b lochvec (1)+1 i * b lochvec (2) ,1 � b lochvec ( 3 ) ] ;

end

Density2Bloch.m

0 function [ bvec ]= Densi ty2Bloch ( rho )

%================================================== ==

%Transforms a density matrix into a Bloch vector (currently f or qubits)

%

%rho: input density matrix.

5 %================================================== ==

i f ( strcmp ( c l a s s ( rho ) , ' sym ' )==1) % check if input is symbolic

bvec=sym( zeros ( 1 , 3 ) ) ;

e lse

bvec= zeros ( 1 , 3 ) ;

10 end

rho=rho*2 � eye ( 2 ) ;

bvec (1)= real ( rho ( 1 , 2 ) ) ;

bvec (2)= imag ( rho ( 2 , 1 ) ) ;

15 bvec (3)= rho ( 1 , 1 ) ;

bvec=bvec . ' ; % To give column vector

end

Process.m

0 function out=Process ( channel , input )

%================================================== ==

%Calculates the e�ect of the channel on the input.

%input:

% - state vector -> channel must be operator element set

5 % - density matrix -> channel must be operator element

% set or Choi matrix

%channel structure: (can be given as only .op part)

%channel.op:

% - operator element set

10 % - Choi matrix -> input must be density matrix

%channel.domain: Domain of the channel parameter (not need ed here)

%================================================== ==

n= length ( input ) ; % dimension of state

out= zeros (n ) ;

15 i f ( i s s t r u c t ( channel ) )

channel=channel . op ; % domain not needed

end

i f ( s i ze ( input ,2)==1)&&( i s c e l l ( channel ) )
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20 for j =1: length ( channel )

out=out+channel { j }* input ;

end

e l s e i f ( s i ze ( input ,1)== s ize ( input ,2))&&( s ize ( input ,1)==n)&& . . .

( i s c e l l ( channel ) ) % input must be density operator

25 for j =1: length ( channel )

out=out+channel { j }* input * channel { j } ' ;

end

e l s e i f ( s i ze ( input ,1)== s ize ( input ,2))&&( s ize ( input ,1)==n)&& . . .

( s i ze ( channel ,1)== s ize ( channel ,2))&&( s ize ( channel ,2)==n^2)

30 out=Pa r t i a lT race ( kron ( input . ' , eye (n ) ) * channel , 1 , [ n , n ] ) ;

e lse

error ( 'Wrong input ! ' )

end

end

PartialTrace.m

0 function op=Par t i a lT race ( input , sysnum , dimvec )

%================================================== ==

%Computes partial trace on a matrix

%

%input: The input matrix (n � n matrix)

5 %sysnum: The index of the subsystem with respect to which we want to trace.

%dimvec: Vector of the dimensions of the two subsystems.

%================================================== ==

switch sysnum

case 1

10 op= zeros ( dimvec ( 2 ) ) ;

ke t= zeros ( dimvec ( 2 ) , 1 ) ;

bra= zeros (1 , dimvec ( 2 ) ) ;

for j =0: dimvec (1) � 1

for k=0: dimvec (2) � 1

15 for l =0: dimvec (2) � 1

ket ( k+1)=1;

bra ( l +1)=1;

hmat= input ( j *dimvec (2)+k+1, j *dimvec (2)+ l +1)*( ke t * bra ) ;

op=op+hmat ;

20 ket ( k+1)=0;

bra ( l +1)=0;

end

end

end

25 case 2

op= zeros ( dimvec ( 1 ) ) ;

ke t= zeros ( dimvec ( 1 ) , 1 ) ;

bra= zeros (1 , dimvec ( 1 ) ) ;

for l =0: dimvec (2) � 1

30 for j =0: dimvec (1) � 1

for k=0: dimvec (1) � 1

ket ( j +1)=1;

bra ( k+1)=1;

hmat= input ( j *dimvec (2)+ l +1,k*dimvec (2)+ l +1)*( ke t * bra ) ;

35 op=op+hmat ;

ke t ( j +1)=0;

bra ( k+1)=0;
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end

end

40 end

end

end

MakeChoi.m

0 function cho i=MakeChoi ( e lements )

%================================================== ==

%Makes Choi matrix from channel operator element set.

%================================================== ==

n= length ( e lements { 1 } ) ; % dimension of system

5

cho i= zeros (n ^2 ) ;

for j =1: length ( e lements )

cho i=cho i+e lements { j } ( : ) * e lements { j } ( : ) ' ;

end

10 end

B.4 Drawing scripts

DrawBloch.m

0 function handle=DrawBloch ( smooth )

%================================================== ==

%Draws a Bloch sphere into a new �gure.

%

%smooth: How many faces should the sphere have horizontally a nd vertically

5 %

%handle: Handle of �gure made.

%================================================== ==

i f ( nargin <1) smooth =30; end

10 % Create new �gure

handle= f igure ( ) ;

set (0 , ' Cur rentF igure ' , handle ) ;

[X,Y, Z]= sphere ( smooth ) ;

15

colormap ( [ 0 , 1 2 8 , 2 5 5 ] / 2 5 5 ) ;

surf (X,Y, Z , ' EdgeAlpha ' , 0 . 3 , ' EdgeColor ' , [ 0 , 0 , 2 5 5 ] / 2 5 5 ) ;

20 alpha ( 0 . 2 ) ;

set ( gca , ' XDir ' , ' r e v e r s e ' ) ;

set ( gca , ' YDir ' , ' r e v e r s e ' ) ;

set ( gca , ' CameraViewAngle ' , get ( gca , ' CameraViewAngle ' ) ) ;

25

l i nema ts = { [ 0 , 0 , � 1 ; 0 , 0 , 1 ] , [ 0 , � 1 , 0 ; 0 , 1 , 0 ] , [ � 1 , 0 , 0 ; 1 , 0 , 0 ] } ;

for j =1: length ( l i nema ts )

l i ne ( l i nema ts { j } ( : , 1 ) , l i nema ts { j } ( : , 2 ) , l i nema ts { j } ( : , 3 ) , . . .

' Color ' , [ 0 , 0 , 0 ] / 2 5 5 , ' LineWidth ' , 1 . 5 ) ;

30 end
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end

DrawState.m

0 function DrawState ( s ta te , s t y l e , co lo r , handle )

%================================================== ==

%Draws a Bloch vector into the current Bloch sphere �gure.

% If handle is given, then to the �gure with handle.

%

5 %state: Can be a bloch vector or a density matrix.

%color: color in 8 bit RGB format, i.e. white is [255,255,255 ].

%================================================== ==

i f ( nargin <4)

handle= get (0 , ' Cur rentF igure ' ) ;

10 i f ( isempty ( handle ) )

error ( ' There  i s  no cu r ren t  f i g u r e  to  draw on ! ' ) ;

end

end

i f ( i s h a n d l e ( handle ) )

15 set (0 , ' Cur rentF igure ' , handle ) ;

e lse

error ( 'Wrong g raph ic  o b j e c t  handle ! ' ) ;

end

20 i f ( s i ze ( s ta te ,1)== s ize ( s ta te , 2 ) ) % state is density matrix

s t a t e=Densi ty2Bloch ( s t a t e ) ;

end

o r i g o = [ 0 , 0 , 0 ] ;

25 i f ( s i ze ( s ta te ,2)==1) % vector is column

s t a t e=s t a t e . ' ;

end

i f ( strcmp ( s t y l e , ' � ' )==1)

30 l i nemat =[ o r i g o ; s t a t e ] ;

e l s e i f ( strcmp ( s t y l e , ' . ' )==1)

l inemat =[ s ta te , s t a t e ] ;

e lse

error ( 'Wrong s t y l e :  Must be  " � " f o r  l i n e  to  o r i g i n ,  and . . .

35 " . "  f o r  j u s t  the  po in t . ' )

end

l ine ( l inemat ( : , 1 ) , l i nemat ( : , 2 ) , l i nemat ( : , 3 ) , ' Color ' , c o l o r /255 , . . .

' LineWidth ' , 2 , ' Marker ' , ' o ' , ' MarkerSize ' , 5 , ' MarkerEd geColor ' , . . .

[ 0 , 0 , 0 ] / 2 5 5 ) %,'MarkerFaceColor',[0,0,0]/255);

40

i f ( strcmp ( s t y l e , ' � ' )==1)

i f ( norm ( s ta te , ' f r o ' )<1)

s u r f s t a t e=s t a t e / norm ( s ta te , ' f r o ' ) ;

l i nemat =[ s t a t e ; s u r f s t a t e ] ;

45 l i ne ( l inemat ( : , 1 ) , l i nemat ( : , 2 ) , l i nemat ( : , 3 ) , ' Color ' , . . .

[ 1 2 8 , 1 2 8 , 1 2 8 ] / 2 5 5 , ' LineWidth ' , 2 , ' L i n eS t y l e ' , ' � . ' ) ;

end

end

end

DrawProcess.m
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0 function DrawProcess ( processS , domain , i n i t s t a t e , p r e c i s i o n , co l o r , handle )

%================================================== ==

%Draws the trajectory of parametrised process starting fro m initstate

% into the current Bloch sphere �gure.

% If handle is given, then to the �gure with handle.

5 %

%processS: Parametrised process (can have only 1 parameter! )

%domain: Domain of the parameter (real interval, ex. [0,1]) .

%initstate: Can be a bloch vector or a density matrix.

%precision: With how many lines should the function approxima te

10 % the trajectory.

%color: color in 8 bit RGB format, i.e. white is [255,255,255 ].

%================================================== ==

i f ( nargin <6)

handle= get (0 , ' Cur rentF igure ' ) ;

15 i f ( isempty ( handle ) )

error ( ' There  i s  no cu r ren t  f i g u r e  to  draw on ! ' ) ;

end

end

i f ( i s h a n d l e ( handle ) )

20 set (0 , ' Cur rentF igure ' , handle ) ;

e lse

error ( 'Wrong g raph ic  o b j e c t  handle ! ' ) ;

end

25 i f ( i s e q u a l ( s i ze ( i n i t s t a t e ) , [ 1 , 3 ] ) | | i s e q u a l ( s i ze ( i n i t s t a t e ) , [ 3 , 1 ] ) )

i n i t s t a t e=Bloch2Densi ty ( i n i t s t a t e ) ;

end

out=Process ( processS , i n i t s t a t e ) ; % parametrised output

30 p=f indsym ( out ) ;

s tep =(domain(2) � domain ( 1 ) ) / p r e c i s i o n ; % steps in domain

p o i n t s=domain ( 1 ) : s tep : domain ( 2 ) ;

prev=Densi ty2Bloch ( i n i t s t a t e ) ;

35 for j=p o i n t s

next=Densi ty2Bloch ( double ( subs ( out , p , j ) ) ) ;

l i nemat =[ prev . ' ; next . ' ] ;

l i ne ( l inemat ( : , 1 ) , l i nemat ( : , 2 ) , l i nemat ( : , 3 ) , ' Color ' , . . .

c o l o r /255 , ' LineWidth ' , 2 ) ;

40 prev=next ;

end

end

DrawDiagonal.m

0 function DrawDiagonal ( d i r e c t i o n , co lo r , handle )

%================================================== ==

%Draws a diagonal into the current Bloch sphere �gure.

% If handle is given, then to the �gure with handle.

%

5 %direction: An (x,y,z) direction vector specifying the

% direction of the diagonal (norm is not important here).

%color: color in 8 bit RGB format, i.e. white is [255,255,255 ].

%================================================== ==

i f ( nargin <3)
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10 handle= get (0 , ' Cur rentF igure ' ) ;

i f ( isempty ( handle ) )

error ( ' There  i s  no cu r ren t  f i g u r e  to  draw on ! ' ) ;

end

end

15 i f ( i s h a n d l e ( handle ) )

set (0 , ' Cur rentF igure ' , handle ) ;

e lse

error ( 'Wrong g raph ic  o b j e c t  handle ! ' ) ;

end

20

i f ( s i ze ( d i r e c t i o n ,2)==1)

d i r e c t i o n=d i r e c t i o n . ' ;

end

25 % normalize to 1

d i r e c t i o n=d i r e c t i o n / norm ( d i r e c t i o n , ' f r o ' ) ;

l i nemat =[ d i r e c t i o n ; � d i r e c t i o n ] ;

l i ne ( l inemat ( : , 1 ) , l i nemat ( : , 2 ) , l i nemat ( : , 3 ) , ' Color ' , . . .

30 c o l o r /255 , ' LineWidth ' , 2 ) ;

end
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