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Abstract

One of the most important problems in quantum information tle-
ory is the control and identi cation of quantum states and quantum
channels. The challenge of this problem is that in case of quam
systems the measurement changes the state of the system, mgkhe
interference and information gaining more di cult.

In this thesis | am dealing with the question of estimating gan-
tum channels. The aim of my work is the realization and testigp of
a procedure capable of estimating quantum channels based amvex
optimization for the case of two level quantum systems, anché for-
mulation and solving of an experiment design problem for nithg the
optimal measurement also in the case of two level, but singl@arameter
guantum channels.

The results of channel estimation are that with pure inputsmore
accurate estimation can be carried out than with mixed inpustates,
and if multiple input states are used, then the estimation pdormance
increases signi cantly.

The result of experiment design problem is that if the chanh@ut-
put is pure, then the optimal measurement direction is alwayin the
axis de ned by the output state.

For the numerical solving of the parameter estimation and geri-
ment design problems, moreover for the implementing of predures
realizing the subproblems | used MATLAB environment.

Keywords : quantum systems, parameter estimation, optimization,
experiment design



Kivonat

A kvantum informéaciéelmélet egyik legfontosabb problémaj a
kvantumallapotok és kvantumcsatornak iranyitasa és idenkacioja.
Ez jelent®s kihivas, ugyanis kvantum rendszerek esetébemérés meg-
valtoztatja a rendszer allapotat, megnehezitve ezzel a hatkozast és
informacioszerzeést.

Ebben a dolgozatban a kvantumcsatornak becslésének kéwéléd
foglalkozom. Munkam célja egy kvantumcsatorna becslésrékalmas,
konvex optimalizalason alapulo eljaras megvaldsitasa, esztelése két-
szintf kvantum rendszerek esetére, valamint egy kisérlettvezési fel-
adat megfogalmazasa és megoldasa optimélis mérés keresésantén
kétszinty, de egyparaméteres kvantum csatornak esetében.

A csatornabecslési feladat eredményeként megallapithatbogy
tiszta allapotokat hasznélva pontosabb becslés tehet®, nhikeverék
allapotokkal, illetve ha tdbb bemeneti allapotot hasznalok, akkor a
becslés hatékonysaga jelent®sen javul.

A kisérlettervezési feladat megoldasa eredményeként miggitot-
tam, hogy ha a csatorna kimenete tiszta, vagy kozel tiszta lapot,
akkor az optimalis mérési irany mindig a kimenet altal meghéarozott
tengelyen, vagy annak kdzelében helyezkedik el.

A paraméterbecslési és kisérlettervezési feladatok nuikes meg-
oldasahoz, valamint a szikséges részfeladatokat megvatbeljarasok
implementalasahoz MATLAB koérnyezetet hasznaltam.

Kulcsszavak : kvantum rendszerek, paraméterbecslés, optimaliza-

las, kisérlettervezés
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Chapter 1
Introduction

Atoms on a small scale behave like nothing on a large scale, for
they satisfy the laws of quantum mechanics. So, as we go down
and ddle around with the atoms down there, we are working with
di erent laws, and we can expect to do di erent things.

R. P. Feynman

1.1 Background and motivation

In these days, the building of quantum computers that can besed to solve
realistic, large scale problems including the breaking ofcryptographic codes
and the simulation of complex quantum systems has two main d culties
from the theoretical point of view. The rst is decoherencein other words the
unavoidable coupling of quantum systems with their enviranent, which leads
to the altering or even the complete destruction of the quanim system's state,
thus causing errors in the calculation. The other main obstde is the lack of
ability to fully manipulate and extract full information fr om the physical sys-
tem, i.e. the control and estimation of the quantum states ahprocesses. This
latter problem has to be handled by the formalism of the modarmethods of
system- and control theory. It is certainly not a trivial problem, as in quantum
mechanics, one has to face the di culty of the threatment of reasurements.
Namely, that no measurement can be carried out on a quantumstgm without
disturbing the state of the system itself.

The task of the identi cation of quantum processes commonly known as
quantum process tomography (QPT) got a signi cant attenti on over about

1



1. Introduction

the last ten years. It is undoubtedly a fundamental problem foquantum infor-
mation theory, as it has considerable relevance not only irugntum computers,
but also in the eld of quantum communication and cryptograny. For exam-
ple, quantum communication channels usually rely on a prioknowledge of
the channel properties.

The problem of quantum process tomography was thus proposkey several
authors, | introduce a few of them here. In the work [1] the dierent methods
already available for process tomography were reviewed,danompared with
respect to the required physical resources. The authors @ consider the case
of estimating physical processes with randomly preparedpats and random
measurements using a maximume-likelihood formulation. Thgoal of the pa-
per [3] is to extend the maximum entropy principle to the casef incomplete
gquantum process estimation. The work of [4] formulates theask of process to
mography as a convex optimization problem. This work also nsiders another
important question in the eld of system identi cation, namely the problem of
optimal experiment design, and derives optimization prokbims to compute the
optimal number of experiments needed. The same goal is set{%), where the
authors seek to optimize experiment design for general onarameter quan-
tum processes using analytical methods. In [6] the subpreiph of optimal input
design is examined.

1.2 Problem statement

There are two principally di erent approaches to quantum pocess tomog-
raphy, the statistical approach and the convex optimizatio based approach.
The former gives information on the statistics of the estinta and on its co-
variance matrix, but it is hard to compute in higher dimensias. In contrast,
the optimization method does not give as much information, Ut it is easy to
compute, and it is closer to engineering mentality.

In this thesis, the choise is thus made on the latter, and badeon the an-
alyzing of the literature, a convex optimization method forthe estimation of
two level quantum processes is to be derived and implementéekthen the ob-
tained optimization problem has to be solved for the case of érent quantum
channel models, di erent types of input states, and the peokfmance in each
case has to be analyized.

As the second main objective, the problem of experiment dgsi for the
estimation of single parameter quantum processes acting two level systems

2



1.3. Structure of the thesis

has to be considered, an optimizaton problem for determirgnof the opti-
mal measurement has to be derived and solved for di erent inp states and
channels.

1.3 Structure of the thesis

The thesis is organized as follows. Chapter 2 gives an intnaction about
the basic notions of quantum information, system identi céion, and convex
optimization.

Chapter 3 gives the problem statement of quantum process tagraphy,
and presents my work and results.

Chapter 4 introduces the experiment design problem for theugntum case
and my problem statement, then describes my solution and ndss.

Chapter 5 summarizes and concludes my work, then presentsrepossible
further tasks on the subject.

In Appendix A a short aximomatic introduction on gquantum medtanics
was placed for the inexpert reader.

Finally, in Appendix B the MATLAB scripts used in the problems adressed
by the thesis were put.



Chapter 2

Basics of quantum information
and parameter estimation

In the rst two sections of this chapter | shortly present a fev basic concepts
of quantum informatics, mostly based on [7, 8]. For the inex@t reader |
recommend before these sections the study of Appendix A. lind further
sections | give a very brief introduction on the basics of sign parameter
estimation and experiment design problems based on the bo[®, and nally
on the basics of convex optimization using [10].

2.1 The qubit

The most basic information containing unit of quantum infomation the-
ory is the two-state system. This is called quantum bit, orqubit for short.
Considering its speci ¢ physical realization, the qubit ca be the spin of any
half-integer spin particle (for example the spin of an eleain), or the two
di erent polarization states of a photon.

The possible states of a qubit are the elements of the two dimsonal
Hilbert space:

ji= jOi+ jli; where; 2C;andj j?+j j?=1": (2.1)

Thus in contrast to the classical bit, which can only be or 1, the qubit can
also take the arbitrary complex superposition of the statg®i andjli. The jOi

and j1i states are usually callecomputational basisIf we measure a qubit in
the computational basis, then the state of the qubit after masurement will
bejOi with probability j j?, andjli with probability j j2. However, if we only

4



2.1. The qubit

know that a measurement has happened, but the result is unkwa, then the
state of the system can be given as the weighted statisticahsgemble of the
two possible outcome states, i.e. as a density operator:

= j j30ihoj + j j%j1ihyj : (2.2)

In the case of one qubit, we can de ne three independent phgal quantities
that can be measured. Traditionally, these are denoted by the operators, the
Pauli operators ,, , and ; (in other notations ;, ,, sorX,Y,Z), whose
matrices in the computational basis are:

x = O; VT ;o oz = : (2.3)

An important property of the Pauli matrices is that they are <lf-adjoint,
their eigenvalues are real, their square is the identity mak (1). Furthermore,
together with the identity matrix they form a basis in the space of2 2 complex
matrices. The commutation relations of the Pauli matricessi expressed by the
following relationship:

a b= abl *1"anc ¢

where" 4. is the Levi-Civita symbol!

If we put the qubit in question into a z directional external magnetic eld,
then we get from the solution of the corresponding Schrodiagequation that
the spin is precessing around the axis. This gives the opportunity to a ect
the state of the qubit arbitrarily with appropriately choosen extrenal magnetic
elds acting for a su ciently long time.

The qubit can be described in a very expressive model, in the-salled
Bloch spheré [11], which can be seen in Figure 2.1. It can be shown that
all possible2 2 density operators i.e. all the possible states of the qubit
can be identi ed uniquely with a point in the volume borderedby the three

dimensional unit sphere. The correspondence is given by tequation
!
1+ X3 X1 in
X1+ i Xo 1 X3

1 .
5 , (2.4)

which comes from the fact that all2 2 density matrices can be expanded in

Lf (a;b; 9 is an even permutation of (x;y;z), then ".c = 1, in case of odd permutation
"abe = 1, else" 45 = 0.
2The sphere got its name from the physicist Felix Bloch, one oHeisenberg's students.
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2. Basics of quantum information and parameter estimation

the Pauli basis: = %(I + X1 1+ Xy 2+ X3 3). The parametersxy, X, X3 form

the Bloch vector, which points to a unique point in the three dimensional unit
sphere.

The positivity constraint of the density matrix transforms within this parametriza-
tion to the constraint kxk = = x7+ x3+ x3 1. The pure and mixed states
also can be distinguished in this model. The pure states takgace on the sur-
face of the sphere, and the mixed states can be found in theenior. Refering
to the case of the half-integer spin particle, the pure staseare calledcom-
pletely polarized and moving towards the interior of the sphere the state gets
depolarized, in the middle takes place theompletely depolarizedtate.

2.2 Distance between quantum states

What do we mean by the distance of two quantum states? For the rasur-
ing of the distance of states we can use the so-callsthtic measures Among
these, one of the most common is thelelity , which is though not a metric,
but can be very useful.

The general de nition of the delity is the following:

q
F(; )=Tr 2 2 (2.5)

10)

1)

Figure 2.1. It can be seen on the Bloch sphere, that all pure sttes of a qubit can also be
written in j (;' )i form.



2.3. Quantum channels

The F(; ) thus gives the distance of the states and , so it is capable for
example of measuring that how much a qubit appearing at the ¢put of a
quantum channel decayed compared to the input while passingrough the
channel. The delity takes values betweerD and 1, i.e.0 F 1. If the
states and are equal, thenF(; ) = 1, and if they completely di er,
then F(; ) = 0. It is important that the delity is invariant under unitary
transformations, i.e.

F(UUU UW)=F(; ): (2.6)

We must also see that the delity is a symmetric function in it variables. This
can be easily seen from Uhlmann's theorem (see patjd of [8]), according to
which

F(, )= max jhjhip (2.7)

where the maximization has to be performed on all the possépuri cations
j 1andj' i of the mixed states and . This expression also illustrates well
that the delity is small if the states and their puri cation s are orthogonal.

In some special cases, the de nition of the delity can be gen more simply.
First, let us take the case of pure states. Let these two stadej i andj' i.
Then the delity:

FG i i)=jhj i (2.8)
Now let us see, what is the delity if one of the states is an artsary , and
the other is a purej i:

P
FG i; )= hjji: (2.9)

2.3 Quantum channels

During quantum communication we have to send the system carihing the
guantum information to another location, while during comptation with a
quantum computer we have to evolve the inner state of the corater in time.
The common feature of these two actions is that the system afhportance
interacts inevitably with its environment, which can not beneglected. Those
models, which model the e ect of the environment on the syste are jointly
called quantum channels

A quantum channel is thus an open system, so for its completeaenination
and mathematical representation we have to use the densitperator formal-
ism. Then to know what happens with the system, the density ayator of the

7



2. Basics of quantum information and parameter estimation

subsystem of importance has to be tracked. As described incBen A.4, the
time evolution of density matrices can be described by soie superopera-
tors.

The superoperator is nothing else than & : ! type map, i.e. a
map taking density operators to density operators, which tsmto possess the
following proprties:

" According to the postulates of quantum mechanics, it has tde linear.

" As it operates on density matrices, it has to preserve thejproperties, so
it has to be positive and trace preserving

" It has to be completely positivé. This means that the superoperato |
acting on the n dimensional expansion of our system is also positive in
case of an arbitraryn, wherel , is the identity map.

Now let us consider how we get the superoperator describingresystem's
time evolution. Let be the density operator of our system with a state space
H, and let the environment with state spacéHg be in somg ih j pure state.
Then the time evolution of the complete | ih j system is by de nition

u( j ih U (2.10)

The above description of time evolution using théJ time evolution operator
Is calledunitary representation Form this we get the time evolution of theH

system by taking the partial trace of (2.10) with respect to lhe environment:
X

°=Try, U( j ih UY = HjUj i h jujji : (2.12)
]

Hereh jUj i is evidently an operator acting on theH system, which we denote
by M;. Then we get an easily manageable mathematical form of thepsrop-
erator, whose name i®perator-sum representation(or Kraus representation):

(2.12)

where we call theM; operators theoperator elementsof the $ map. Because

3Based on the completely positivity and trace preserving prgerty the superoperators are
also commonly called CPTP maps.

8



2.3. Quantum channels

of the unitarity of U it also holds that

MYM; = 1; (2.13)

which expresses the trace preserving property &f If we de ne the channel
directly with the operator elements, and not by deriving it fom the unitary
representation, then we have to pay attention that (2.13) hids.

The big advantage of the Kraus representation is that it desibes the dy-
namics of the system without needing the attributes of the efironment to
be taken into account explicitly; all nesessary informatio is embedded into
the operator elements, which only have e ect on our system.dwever we can
mention as a drawback, that the description of quantum chareis in this way
is not unique. A given superoperato$ has more equivalent Kraus represen-
tations, as for the deriving of$ we can perform the partial trace in (2.11) in
an arbitraFr,y basis. It can be shown, that if in place of djjig basis, we use
anfjii = ; Ujjjig basis, then the relation between the operator elements of
the two bases:

Ni = Uj M ; (2.14)

whereU; is a unitary matrix. 4

There is also a third possible description of the system'sntie evolution,
the state representant which is in e ect a density operator de ned on the
H H g space. The matrix representation of this density operatorsicom-
monly called Choi matrix, which is in essence the matrix representation of the
superoperator$. Between the Kraus representation and the state represemta
the Jamiokowski isomorphism [12, 13] makes connection.

Let jeiyy . be a maximally entangled state of the systemH) and its
environment Heg), i.e. X
jeipn o = jijiig ;

i
wherefj iig andfj iigg are the respective bases of the spaddsand Hg. With
the help of this let us de ne a vector in theH H g space, which we assign to

the quantum state :°

- - . - X e ws oww
ji = 1 jeun . = jiijiie ;

4If the two bases does not contain the same number of vectorshen we augment the
smaller one with zero vectors.
5The j:i notation tries to indicate that these vectors represent opeators.



2. Basics of quantum information and parameter estimation

This assignment is obviously unique, and it also can be sedmat jeiyy .
jdi.

Generally we can assign vectors this way to arbitrar, B linear operators.

The scalar product of these vectors itH H g is de ned in a natural way:
| |
X X '
HAjBI = hjAY £ hj Bjjijjie =Tr A'B ; (2.15)
i j
what is by de nition the Hilbert Schmidt scalar product of t he two operators.
We can identify two other rules also easily:

A B jCi = jBCATi ; (2.16)

and
Try jAithBj = ABY ; (2.17)

whereA;B 2 L (Hg). From the above we see that an isomorphism can be made
between the density operators and the pure states of the sgeld H g.

Similarly we can relate the quantum channels and the mixed ates of the
H H g space. LetA be a channel, whose operator element setfigg, its
state representant is then

Xa= A | jlihi= X JAKIThA] : (2.18)
k

The above de nition well exempli es why is the complete posivity property
convenient in the case of superoperators. This ensures ndyrteat the X, state
representant, as the mixed state identi ed with the channeA also is a valid
density operator on theH H g space. Comparing the (2.13) equation which
expresses the trace preserving property of the Kraus repessation with equa-
tions (2.17) and (2.18), and noting thatTry jAYithAYj T=Tr He JAIMMA]
the trace preserving property ofX, can be stated in the following condition:

Tru.(Xa)= 34 2L (H) : (2.19)
The inverse of the map, i.e. theX, ' A relation assigning theA channel
to the X, superoperator is the following:
A()=TrH (T iHE)XA ;

10



2.3. Quantum channels

which | do not prove here.

2.3.1 Example channels
The depolarizing channel

Under the e ect of the depolarizing channel a qubit will be dpolarized
with probability p, i.e. it gets to the completely mixed state = %I , and with
probability 1 p it remains intact. The parameter p of this channel is thus
indicates the strength of depolarization, and it is the onlyparameter of this
channel.

The Kraus operator elements of the channel are the following

.
— 3 . _1p_, . _1p_,, . _1p__ .
Eqo= 1 ZrpI ; Egq1 = > pX ; Eg2 = > pY ; Eg3 = > pZ : (2.20)
Note that because all the operator elements can be written as Pauli
matrix or identity multiplied with a scalar factor, this channel belongs to the

more general class of Pauli channels.

The phase damping channel

The phase damping channel describes a type of noise de nectlesively
in quantum mechanics, the loss of quantum information indegmdently from
energy. Such process is for example the random scatteringaophoton in an
optical ber, or the disturbation of electron states origirating from interactions
with distant charges. The phase damping channel also has pmne parameter.

The Kraus operator elements of this channel:
! !
p Po 0 P P o

Epo="pl = 0 pF_) y Epu= 1 pZ= P—

(2.22)
As can be seen from the form of the operator elements, this cireel also is
a Pauli channel.

The amplitude damping channel

For the illustration of amplitude damping channel let us imgine an atom,
whose excited statgli, and ground statejOi carries the information of one
qubit. During the e ect of the channel, with probability , the atom falls back
through spontaneous emission to the ground staiéi .

11



2. Basics of quantum information and parameter estimation

The Kraus operator elements of the channel can be written as:

|
p_'
1 0 0
E.n= Byl = : 2.22
a;0 0 pl al 0 0 ( )

The form of the operator elements indicate that in contrasta the above

two channels, this channel is not a Pauli channel.

2.4 Methods of parameter estimation

In the eld of system- and control theory, it is a common prokém that we

have to search for the best model within a parameterized setpossible system
models. In other words, we have to choose the parameter so tliae model
best approximates the property in question of the system. s, the parameter
estimation (or identi cation) of dynamical systems is an inportant eld. The
basic problem statement of parameter estimation is given itme following.

12

Let us assume that the following are given:

A parametrized dynamical system model
§=M(x )2M ;

whereM is a model form the set of possible modeld , x is the input,
¥ is the predicted output computed by the model, and is the parameter
vector.

A record of measurement data
DN =f x(k);y(k) ; k=0;:::Ng;
wherey(k) is the true output of the system, corrupted by noise.

A suitable signal norm Vy that measures theprediction error "(k; )
describing the quality of the parameter estimation, i.e. th di erence
between the model outputy and the measured true outputy of the
system:
1 X
W= Kk k= k) (2.23)

t=1
where " is a scalar-valued function. Formally the normvy functions as
a mapping from the measurement record s&@" to the set of possible



2.4. Methods of parameter estimation

parameter valuesDN ! "\, where "\ corresponds to a model iM

Thus, the estimate "y can be de ned as the solution to the minimization
problem
"\ =argmin Vi (;D V) : (2.24)

2.4.1 Least squares estimation

The least squares (LS) method is very popular in parameter tesation,
because of its simplicity, and good statistical propertiesThe basis of the LS
method is the direct minimization of the prediction errory(k)  $(kj ), mea-
sured in a 2-norm.

This method uses the' function “(") = 1"2 in the loss function, thus

2
assuming the system model i6(k; ), the signal normVy is the following:

X

W = Sy flk) 2 (2.25)

1
N t=1

An important property of the LS estimator is that if the system model is a
linear function of the parameters, then the estimatofy can be given explicitly,
without optimization. Furthermore, this method is a so-cded o ine method,
as it uses all the available measurement data and determing® estimator in
one step. On the other hand, if all the measurement data are havailable at
once, but only gradually over time, or it is not possible to sire all the data
together, then online methods are preferred. Such a methaglfor example the

recursive least squares algorithm.

2.4.2 Estimation based on classical and quantum infor-
mation

During parameter estimation, it is essential to be able to dermine the
goodness of the estimator also in the parameter space. A qtisnwhich can
be used for such purpose is the Fisher information, which rects the amount of
information that a measured random variable (i.e. the podsie measurement
records) can carry about the parameter. In other words, it measures the
accuracy of the unbiased estimatofy of . This can be seen from the Cramér
Rao bound:

Var("v)  F() '

13



2. Basics of quantum information and parameter estimation

whereF () is the Fisher information matrix. This bound states that thevari-
ance of any unbiased estimator can not be smaller than the ense of the Fisher
information, i.e. the higher the Fisher information, the b&er estimation we
can have. An unbiased estimator which achieves this lower lnad is said to be
e cient.

In classical statistics, the Fisher information is de ned B the following

expression: |
‘ @og L(jy)

F()= L(j _—

() (iy) @
whereL( jy) is the likelihood function, andy is the measured output. If the
parameter is ann dimensional vector, then the Fisher information will be an
n n matrix.

dy ;

Let us consider now the quantum case. Let be a parametrized quantum
state, and let the probability distribution of the outcomesof the measurement
M = fM g carried out on  be denoted byp( j ), where denotes the
measurement outcomes. According to (A.19) and (A.10) thisasa be computed
as

p( j)=Tr( M): (2.26)

Based on this, the(i;j )th element of the Fisher information matrix can be
written according to [14, 15] as

X @p(i)g@p(i) x T §M T &M

[F(:M )]i;j = p( ) Tr M

: (2.27)

Note that in the quantum caseF ( ; M ) depends on the actual measurement
M with which the experiments had been performed. This rises ¢hquestion
whether there exists a bound for=( ;M ), which depends only on the pa-
rameter? The answer was given by [16] by the quantum Cramér-8dound,
which states that no unbiased estimator of can have smaller variance than
H( ) 1, the inverse of theHelstrom quantum information matrix. [17] showed
that H( ) is the maximal Fisher information, i.e. the following infomation
inequality holds for all possible measurements:

F(;M) H(): (2.28)

14



2.5. Experiment design for parameter estimation

The Helstrom information can be de ned in the following way:
— 1 .
[H( )]i;j = ETI’ (L, Lj + Lj L,) ; (229)

where Ly is the symmetric logarithmic derivative (SLD) of , which is the
solution of the equality

_= %(l—k + L) (2.30)

2.5 Experiment design for parameter estimation

The purpose of experiment design in parameter estimation dlory is to
choose the design variables such that the data sBtN of experimental results
contain the most information with respect to the model seM . In other words,
we should be able to discriminate any two di erent models inHe set.

Design variables may include

" the choice of which signals are to be considered as inputs)choutputs,
i.e. where to manipulate the process and where to measure it,

"~ the sampling interval, i.e. how often the signals are sametl or measured,

" the type of input signals, mostly in relation with its secord-order prop-
erties and its shape. The signals should excite the systemdaforce it to
show its (possibly unknown) properties.

" the number N of input-output measurements to be collected.

Formally, let all the design variables associated with thex@eriment be
denoted byX . Then the resulting "\, estimate converges to the limit (X), and
the asymptotic covariance matrix of the estimate i (X ). These expressions
can be translated to other quantities of interest. Then we e¢asay that the
modelM  (X) is the best approximation of the real system under the chosen
X. If the model setM contains the real systents, thenM  (X) = Sif X
is such that no other model is equivalent to the system undeft .

Once X is chosen such that the limiting model (X) is acceptable, then
it can become interesting to further seleciX so that the covariance matrix
P (X) is minimized. This is the problem of optimal input design, with can
be stated as

min P (X) ;

15



2. Basics of quantum information and parameter estimation

where is the scalar measure of how large the matriR is, and X is chosen
from the desings subject also to the constraints which the olte of design
variables discussed above might impose.

2.6 Convex optimization

In many engineering problems, such as control systems, esttion and
signal processing, communications and networks, electromircuit design, data
analysis and modeling, convex optimization has a wide ran@é applications,
therefore it is an important sub eld of mathematical optimization. Some very
popular methods also belong to the class of convex optimiza problems,
such as least squares described in Section 2.4.1, and linpargramming.

A convex optimization problem consists of the following eteents:

“ A convex function f (x) : X ! R to be minimized over the variablex,
where X is a convex subset of a real vector space.

" Inequality constraints of the form gj(x) 0, where the functionsg; are
convex.

" Equality constraints of the form h;(x) = 0, where the functionsh; are
ane.

Thus the formal de nition of a convex optimization (in particular mini-
mization) problem can be written as

minf (x) so that
g(x) 0 i=1;:::;n
hi(x)=0; 1=1;:::;m

The most important properties of a convex optimization prolem are the
following:

" If there exists a local minimum, then it is a global minimum.
" The set of all global minima is convex.

" If the function f is strictly convex, then there exists at most one mini-
mum.

16



2.6. Convex optimization

Another important fact is that there are very e cient numerical algo-
rithms to solve convex optimizaton problems. These are foxample the ellip-
soid methods, the subgradient methods, the cutting-plane ethods, and the
interior-point methods. There are also many solver prograsravailable, a few of
them the ones in particular that are free and can be used withMATLAB are
SeDuMi, SDPT3, MOSEK, and SDPA. A short description and a coprehen-
sive benchmark of these and other solvers can be found in [18]

Finally, | mention that convex optimization is very useful n quantum me-
chanics, as many objects in quantum mechanics form convexssdor example
probability outcomes, density operators, POVM elements,redl Choi matrices.

17



Chapter 3
Quantum process tomography

In this chapter | present my work on quantum process tomogrdgy, starting
with the discussion of the nesessary theoretical princige

3.1 The problem of quantum process tomogra-
phy

The problem of quantum process tomography (or channel estation) can
essentially be formulated in two type of methods: direct, ahindirect [1]. In the
indirect method, we trace the problem back to quantum statedmography, i.e.
the information about the unknown quantum channel is obtaiad by sending
known probe quantum systems through the channel, and perfong state
tomography on the output states. The problem of quantum sta tomography
is discussed shortly in Section A.5. In contrast, in the dicg method, the
experiments directly give information about the channel, wthout the need for
a state tomography step. In this work, | will follow the indirect procedure,
mostly relying on the work [4].

The formal mathematical model of process tomography thus otains the
following elements:

" A known input density operator on the Hilbert spaceH of the system.

" The unknown quantum channelE : H'! H , which is to be estimated.
The channel can be written for example in the Kraus r%presc-mion, in
which case the output ofE is then by (2.12) = E( )= ,E E.

" A POVM, ie.an M = fM g set of positive operators, with which we
can perform quantum measurement on the channel output state.

18



3.1. The problem of quantum process tomography

System
&

POVM - Outcome counts

— & =0, —
() i My ={Ma -} {ca,y, ny trials }

Py —

Figure 3.1. The scheme of data collection for process tomogphy.

Note that we can use di erenttomography con gurations i.e. di erent input
states and POVMs in order to achieve better estimation oi. In this work,
the input-POVM pair corresponding to the th con guration is denoted by
and M .

3.1.1 Data collection

The rst stage of process tomography is the collection of thmeasurement
data into a measurement record. The measurements are perfad in each
con guration n times independently. This scheme can be seen on Figure 3.1.

In order to be able to uniquely identify the channel output sate, an impor-
tant requirement in quantum process tomography is that the masurements
must be tomographically complete. This means that the meased POVM ele-
ments must form an operator basis on the Hilbert space of thgstem, so it can
provide all the information about the output state, and thuson the channel.
Such a set of measurement operators is sometimes calleguarum

During data collection, the di erent outcomes of the measurements in the
con guration  are counted in the variablec. , and put in the measurement

record D. Then obviously X

P .
Thus, we have to perform a total number ohy, = n independent mea-
surements. The estimatorE of the channel E will be calculated from these
measurement outcomes, based on the formula (2.24).

3.1.2 Least Squares estimation

The next step of the tomography problem is to choose a suitabkstimation
procedure. As | mentioned in Subsection 2.4.1, the least sges is a popular
method, because it is easy to implement, so in this work | usetfor pro-
cess estimation. The exact form of the LS objective functiofor the process
tomography problem is derived in the following.

19



3. Quantum process tomography

If we write the = E( ) output of the channel in Kraus representation:

then based on the statements in Section 3.1, the probabilitgensity function
of the measurement results will be
X
p()=Tr M. =Tr E'M. E; : (3.1)

i
Note that this is a binomial distribution for xed and

In this expression, the optimization variables would be th&raus operator
elementskE;. However, as these do not form a convex set, the LS optimizati
problem derived would be nonconvex. To overcome this di ciy, we can choose
the Choi matrix as optimization variable.

In order to achieve this, we can continue (3.1) using the relan (2.15) on
the Hilbert Schmidt scalar product:

X X
p()=" T EM, E = hM EE i:

By (2.16) we get

X Y EjE i = hEjE M )T DiEid =
i Xi
= HEj( T MY )Ei =
b2 3
X

o ng_{ '\ﬂ;jEi"‘hEijg =

= Tr(R : E) ;

where g is the Choi matrix of the channelE.

Proceeding with the derivation of the objective function, a empirical es-
timation of the p ( ) probability can be given by the

— C;
p ()= = (3.2)

relative frequency calculated from the measurement ressit

If we assume that for this estimation Ep ( ) = p ( ), and we know that

20



3.2. Numerical solution

the n measurements are independent, then the variance of the (Beémpirical
estimate is known to be

Varp() = 1p()1 p()

Thus, for largen ,p( )! p()andvVarp () ! 0O ,sop( ) is agood
estimate of the real valuep ( ). This leads to formulating the parameter esti-
mation problem as the following least squares objective:

X 2
arg min p() TR, g ; (3.3)

so that E 0; TrHE( E) = iH .

This problem is thus a convex optimization problem in the Chiomatrix
thus it can be solved easily using numerical algorithms.

3.2 Numerical solution

In this work, | considered the problem discussed in Subsemti 2.4.1 for
the case of quantum processes acting on two level quantum tgyss (qubits).
For the solution | used MATLAB R2008b environment augmented ith Maple
Toolbox for MATLAB software package, in which the optimizaton problem
(3.3) was solved using YALMIP optimization problem modelig language [19]
and the SDPTS3 solver [20]. The MATLAB scripts made can be sedn Ap-
pendix B.

3.2.1 Generating measurement data

The rst subtask of the process tomography is to obtain a reatic measure-
ment data record. For this purpose a function was implementig'see Subsection
B.1 in Appendix B), which takes the set of con gurations, i.epairs of an input
density matrix ~ and a set of POVM elementdM, furthermore the process
which has to be identied in the form of a Choi matrix or Kraus @erator
element set, and the vector of the number o experiments to perform in
each con guration.

Using these inputs, the function generates the channel outpstates , and
simulates quantum measurement on them times for each con guration.
Note that quantum measurements are probabilistic (see Sem A.2), thus the
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3. Quantum process tomography

internal pseudo random number generator of MATLAB was used.

3.2.2 Setting up the tomography con gurations

The aim of the simulation experiments was to analyze the permance of
the numerical optimization based estimation of quantum chanels. The exper-
iments were set up as follows.

A

Two types of input states were used, a pure state and a mixedase, as

di erent behaviour is expected based on previous works in ¢nliterature

of quantum tomography [21]. In the rst type of experiments,one of
these was selected. Later, the case of multiple inputs wasalconsidered
to see if it improves the quality of the estimation.

With the speci ed input, the experiments were performed on pe of the
three example quantum channels introduced in Subsection32l, with
two values of their parameters, i.e. two levels of channelrsehgth were
considered.

As mentioned above, to obtain a tomographically complete pasurement,
an operator basis on the Hilbert space of the system is reqgedt. A natural

choice for such a basis is the set of the three Pauli matrice®in (2.3).
As each of these can be decomposed by (A.5) into a two eleme@VAV,

three measurement con gurations had to be used in the sim@ecase,
one for each direction corresponding to a Pauli matrix.

The total ny; number of measurements was distributed among the three
con gurations equally, i.e. for each con guration , an equal number of
n = %ntot experiment were used. As this distribution applies for the
rest of this chapter, in the following the number of measureemts in
any con guration will be denoted simply by n. The experimental data
obtained this way was used as measurement record for processmation
purposes.

Each experiment setup was repeated ve times, and each of tlestimated
process Choi matrices” were analyzed using the following three estimation
performance measuring quantities:

22
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Fidelity of the output states given by the true channel E and the es-
timated channelE, i.e. F(E( ); E( )). This characterizes the estimation
guality in the state space. The delity values obtained fromthe ve re-
peated experiments were averaged.



3.3. Results

" The Hilbert Schmidt distance of the true and estimated Cha matri-
ces, i.e. the Hilbert Schmidt norm k “k of the estimation error.
The Hilbert Schmidt norm values obtained from the ve repeded ex-
periments were also averaged. The Hilbert Schmidt norm ishie norm
associated with the Hilbert Schmidt scalar product de nedin (2.15).

A

The empirical covariance of the ve estimates was also caltated. As the
Choi matrix is Hermitian, it has d* = 16 free real parameters in principle
(d is the dimension of the system's Hilbert space). This howavean be
reduced tod* d? = 12 if we take the constraints of problem (3.3)
also into account. The covariance matrix was calculated beg on these
parameters with the formula

1 X2 1 X2

1—1i:l(q o(c Q' wherec= 5 G

i=1

and the numbersc are the independent real parameters of the Choi
matrix. Finally, to obtain a single scalar value, the norm othe empirical
covariance matrix was taken.

| also have to mention, that as the experiments were performewith
channels which have only one independent parameter, and thbjective
(3.3) calculates with12 independent parameters, the problem is overpa-
rameterized, hence we can not expect to be able to recover tlsangle
parameter of the channel from the optimal Choi matrix estime .

3.3 Results

To investigate the dependence of the performance indicatquantities on
the number of measurements in each con guration, each of the experiments
were performed with increasingn values, until su ciently small speed in the
convergence of the performance indicators was reached. Shvas measured
by comparing the variance of the last ve values of each indator quantity
to a given threshold level, which was chosen to b®0 8. If the experiment
did not reach the desired convergence speed in this senseneafter n = 1000
measurements, then the experiment was terminated.

The performance indicator quantities for each experiment eve plotted as
functions of the total number of measurements. The two channel strength
values were chosen to be=0:3and = 0:9in case of the amplitude damping
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3. Quantum process tomography

and depolarizig channels. In case of the phase damping chahhowever, as it
can be seen from its de nition in Subsection 2.3.1 a greatehannel parameter
correspond to a weaker e ect, so for a weak e ect = 0:7 and for a strong
eect = 0:1 was chosen. On each plot, the blue graph always corresponds
to the weaker version of the channel, and the red graph corpends to the
stronger.

For each of the experiment groups with pure, mixed and multip input
states, the Bloch sphere indicating the trajectories of thehannel output states
as a function of the channel parameters was also plotted. Ohese, the red
line indicates the amplitude damping channel, the blue linendicates the phase
damping channel, and the green line indicates the depolang channel. The
input state is marked with black circle at the common startig point of the
channels. The output states for = 0:3 ( = 0:7 for the phase damping
channel) are marked with black dot, and the ones for=0:9 ( = 0:1 for the
phase damping channel) are marked with black cross.

3.3.1 Experiments with pure input state

The input state in these experiments was the pure state withhie Bloch

vector 2 3
r

1 1
X = églg:
1

The state and its trajectory as a function of the channel stregth parameters
of the three example channels can be seen on Figure 3.2. Tharuhel output
states for the three channels with both strength parameterare also depicted.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.3a, the dglon Figure
3.3b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.3c.

It can be seen on the gures that approximatelyn = 200 measurements
were enough in this experiment for each performance indicatto converge.
The Hilbert Schmith norm shows that the stronger channel eect allowed a
better estimation. However it can be clearly seen also frorhe Hilbert Schmith
norm, that though the e ect of the channel could be reproduag very well (as
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Figure 3.2. The Bloch sphere with the trajectories of the chanel output states as a function

of the channel parameters for the experiments with pure inpa state. The red line indicates

the amplitude damping channel, the blue line indicates the fnase damping channel, and the
green line indicates the depolarizing channel. The input sate is marked with black circle at

the common starting point of the channels. The output statesfor =0:3 ( =0:7 for the

phase damping channel) are marked with black dot, and the onefor =0:9 ( = 0:1 for

the phase damping channel) are marked with black cross.

it is shown by the delity), but because of the overparametaration of the
problem, there are many” estimates with the same channel e ect, so the
channel parameter could not be recovered, i.e. the mapping! , where

is the channel output could not be inverted. This behaviouran be seen also
in the following experiments with single input states.

The phase damping channel

The empirical covariance can be seen on Figure 3.4a, the dglon Figure
3.4b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.4c.

In this experiment, a number ofn = 200 measurements was also enough,
however the in this case the weaker channel could be estiméateetter.

The depolarizing channel

The empirical covariance can be seen on Figure 3.5a, the dglon Figure
3.5b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.5c¢.

In case of the depolarizing channel, as it can be seen from tHdbert
Schmith norm, even fewer measurements gave a very good estie) especially
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Figure 3.3. The empirical covariance can be seen on Figure Yathe delity on Figure (b)
and the Hilbert Schmith norm k "k on Figure (c) for the amplitude damping channel
with pure input state. The blue graph corresponds to =0:3 and the red graphto =0:9.
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Figure 3.4. The empirical covariance can be seen on Figure Jathe delity on Figure (b)
and the Hilbert Schmith norm k "k on Figure (c) for the phase damping channel with
pure input state. The blue graph corresponds to =0:7 and the red graph to =0:1.
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Figure 3.5. The empirical covariance can be seen on Figure Jathe delity on Figure (b)

and the Hilbert Schmith norm k "k on Figure (c) for the depolarizing channel with pure
input state. The blue graph corresponds to = 0:3 and the red graphto =0:9.

in the case when the channel output was almost completely neid.

3.3.2 Experiments with mixed input state

The input state in these experiments was the mixed state witthe Bloch
vector 23

1 g
X:E §gig

The state and its trajectory in function of the channel stregth parameters
of the three example channels can be seen on Figure 3.6. Tharoiel output
states for the three channels with both strength parameterare also depicted.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.7a, the dglon Figure
3.7b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.7c.
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3. Quantum process tomography

Figure 3.6. The Bloch sphere with the trajectories of the chanel output states as a function

of the channel parameters for the experiments with mixed inpit state. The red line indicates

the amplitude damping channel, the blue line indicates the fhase damping channel, and the
green line indicates the depolarizing channel. The input sate is marked with black circle at

the common starting point of the channels. The dash-dotted gay line helps to imagine the
position of the state inside the sphere, as it shows the dirdon of its bloch vector towards

the surface. The output states for = 0:3 ( = 0:7 for the phase damping channel) are
marked with black dot, and the ones for =0:9 ( = 0:1 for the phase damping channel)
are marked with black cross.

We can observe in these gures that the performance indicat® (except
the delity) converge slower, about 300 measurements are needed, and the
estimation in the case of the stronger channel is somewhatttes.

The phase damping channel

The empirical covariance can be seen on Figure 3.8a, the dglon Figure
3.8b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.8c.

In this case, we get worse performance compared to the expasnt with
pure input. From other aspects, the two experiments are sifar.

The depolarizing channel

The empirical covariance can be seen on Figure 3.9a, the dglon Figure
3.9b and the Hilbert Schmith norm k "k of the estimation error on Figure
3.9c.

As in the case of pure state input, the depolarizing channebn again be
estimated very good in terms of Hilbert Schmith norm.
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Figure 3.7. The empirical covariance can be seen on Figure Jathe delity on Figure (b)
and the Hilbert Schmith norm k "k on Figure (c) for the amplitude damping channel
with mixed input state. The blue graph corresponds to = 0:3 and the red graphto =0:9.
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Figure 3.8. The empirical covariance can be seen on Figure Jathe delity on Figure (b)

and the Hilbert Schmith norm k "k on Figure (c) for the phase damping channel with
mixed input state. The blue graph corresponds to =0:7 and the red graphto =0:1.
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Figure 3.9. The empirical covariance can be seen on Figure Yathe delity on Figure (b)
and the Hilbert Schmith norm k "k on Figure (c) for the depolarizing channel with
mixed input state. The blue graph corresponds to = 0:3 and the red graphto =0:9.

3.3.3 Experiments with multiple pure input states

In these experiments, three pure states were used as inpugch paired
with all three measurement directions, thus forming a totahumber of nine
con gurations. The total ny,; humber of measurements is thus,,; = 9n, where
n is the number of measurements in each con guration, as in thgrevious
experiments.

The input states were the following pure states given with teir Bloch

vector: 2 3 2 3 2 3
r r r

i 1 i 1 i 1
X1 = églg; X2 = Eg 1%; X3 = églg :
1 0 2

The three input states and their trajectory in function of the channel param-
eters of the three example channels for the channel strengths 0:3 ( =0:7
for the phase damping channel) and = 0:9 ( = 0:1 for the phase damping
channel) can be seen on Figure 3.10.

30



3.3. Results

Figure 3.10. The Bloch spheres with the trajectories of the bannel output states as a
function of the channel parameters for the experiments with multiple pure input states.
The red lines indicates the amplitude damping channel, the kue lines indicates the phase
damping channel, and the green lines indicates the depolaing channel. Each input state
is marked with black circle at the common starting point of the channels. The output states
for =0:3( =0:7for the phase damping channel) on Figure (a), and the ones for =0:9
( =0:1 for the phase damping channel) on Figure (b) are marked with back cross.
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Figure 3.11. The empirical covariance can be seen on Figure) and the Hilbert Schmith
norm k "k on Figure (b) for the case of the amplitude damping channel wih multiple
input states. The blue graph corresponds to = 0:3 and the red graphto =0:9.

The amplitude damping channel

The empirical covariance can be seen on Figure 3.11a and thdbirt
Schmith normk "k of the estimation error on Figure 3.11b. As there were
three input states, the delity for each of them can be seen oRigure 3.12.

These gures show that using multiple inputs can signi canly improve the
estimation performance, however, the performance indicas have a greater
deviation, and the convergence is slower. Approximately = 500 measure-
ments are required for an acceptable level of error.

The phase damping channel

The empirical covariance can be seen on Figure 3.13a and thébkrt
Schmith normk "k of the estimation error on Figure 3.13b. As there were
three input states, the delity for each of them can be seen oRigure 3.14.

In this case, similar comments can be made as in the case of #mplitude
damping channel.

The depolarizing channel

The empirical covariance can be seen on Figure 3.15a and thébkrt
Schmith normk "k of the estimation error on Figure 3.15b. As there were
three input states, the delity for each of them can be seen oRigure 3.16.

The performance of this experiment is similar to the case ofi¢ amplitude
damping channel.
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Figure 3.12. The delity for the amplitude damping channel with multiple inputs. Figure
(a) corresponds to the Bloch vectorx,, Figure (b) corresponds to the Bloch vectorx,, and
Figure (c) corresponds to the Bloch vectorxs.
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Figure 3.13. The empirical covariance can be seen on Figurea) and the Hilbert Schmith

norm Kk

states. The blue graph corresponds to = 0:7 and the red graph to

=0:1

"k on Figure (b) for the case of the phase damping channel with mitiple input
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Figure 3.14. The delity for the phase damping channel with multiple inputs. Figure (a)
corresponds to the Bloch vectorx,, Figure (b) corresponds to the Bloch vectorx,, and
Figure (c) corresponds to the Bloch vectorxs.
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Figure 3.15. The empirical covariance can be seen on Figurea) and the Hilbert Schmith
norm Kk "k on Figure (b) for the case of the depolarizing channel with miltiple input
states. The blue graph corresponds to = 0:3 and the red graph to =0:9.
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Figure 3.16. The delity for the depolarizing channel with multiple inputs. Figure (a) cor-
responds to the Bloch vectorxy, Figure (b) corresponds to the Bloch vectorx,, and Figure
(c) corresponds to the Bloch vectorxs.

3.4 Discussion

From the above experiments we can conclude the following. @mumber
of experiments needed to reach an acceptable error level vaggproximately
between200and 300for the case of single inputs.

The quantity which proved to be the most useful in these expenents was
the Hilbert Schmidt norm k "k, as it di ers almost in each case. Its value
however shows considerable error, which is the e ect of theeyparameterized
problem. In contrast, the delity was quite similar in all experiments, showing
that at least with respect to the actual input used the chan nel e ect could
be estimated very accurately.

It can also be seen that with pure inputs, more accurate estettion can be
carried out than with mixed input states. However, the depalrizing channel
proved to be easily estimated in each case, probably becautsesymmetric
behaviour.

In contrast to the single input case, for multiple inputs abat n = 500
measurements was needed in each con guration, but these gpf experiments
signi cantly increased the estimation performance.
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Chapter 4
Experiment design

In the following sections | will introduce the problem statenent of experi-
ment design in the case of quantum process tomography baseutloe works of
[5, 14], then present my choice of speci ¢ design criteria,ynwork and nally
the results.

4.1 The problem of experiment design

In the indirect approach of quantum process tomography, thdesign vari-
ables of the experiment are the input state, the measurementhe number
of measurements per con guration, and the type of the estintar. The latter
however can be taken out of the picture, as the Cramér Rao bodrintroduced
in Section 2.4.2 gives a lower bound on the estimator e cieryc(assuming it
Is unbiased), namely the inverse of the Fisher informationlhus, the prob-
lem reduces to choosing the remaining three design variablsuch that they
minimize the lower bound, or equivalently, maximize the Fiser information.

From the above it is apparent that the experiment design prdbm is in fact
an optimization problem. This problem can be split into seval subproblems,
each associated with a speci c design variable. In my workdo not study the
case of the optimal input, nor the number of measurements asdonsider only
one con guration here. Thus, the task is to nd the optimal measurement with
the input state xed.

An important feature of this problem as | mentioned in Section 2.4.2 is
that the Fisher information has an upper bound which is indegndent of the
measurement. This is the Helstrom quantum information. Theuestion of un-
der what circumstances is this bound attainable, is of cordgrable signi cance
in the eld of quantum information. In general, the optimal POVM depends
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4.1. The problem of experiment design

on the actual value of the unknown parameter. Only in special cases does
one measurement strategy achieve the bound uniformly over

4.1.1 The qubit case

In this thesis, | only consider the the case of two level quamtn systems (i.e.
qubits) and such channels that have one real and continuousasar parameter
whose value is known. As the input state is xed in this problm, we can
determine the trajectory of the ( ) channel outputs in function of the channel
parameter in the Bloch sphere, which allows us to calculaténé¢ Bloch vector
u( ) and its derivative u( ) with respectto for a given (). Itis known from
the literature [22] that the optimal measurement for which he Helstrom infor-
mation is attainable for a given can be found in the plane spanned by( )
and u( ), and a simple projective measurement in this plane attaingjaality
if both outcomes have positive probability. My aim here is taletermine the
optimal measurement starting from pure and mixed input sta¢s, and compare
the results in the case of di erent single parameter quantunshannels.

Thus in the case of qubits | search for the optimal measurenten the set
of all possible orthogonal pairs of spin directions, i.e. ¢hpossible antipodal
pairs of three dimensional vectors in the Bloch sphere, talg into account
that the optimal vector must be in the plane de ned by the nornal vector
n=u() u().As each direction in the Bloch sphere corresponds to a pure
state j ih j, and as density matrices are Hermitian so they can be validly
tought as observables, it is a natural choice to identify th@ptimal direction
with the two element POVM fj ih j;2 | ih jg.

Based on the above, the operator ih j can be represented with a bloch
vector m = [my; my; ms]™, thus the optimization problem for the optimal ex-
periment design can be formulated as

argrpninkH( ) F(;M)k; (4.2)

so that kmk=1;: m'n=0:

whereM is the two element POVM corresponding to the vectom and n =
u( ) u( ) is dened above.

Unfortunately the problem in this form is not convex, thus to nd its global
optimum is not guaranteed starting from an arbitrary initial solution. But this
drawback can be alleviated somewhat by searching throughdlstate space
starting from several initial solutions. From the above, itis enough to consider
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4. Experiment design

the intersection of the Bloch sphere and the plane with the mmal vector n.

Note that the Helstrom information of the system depends onhe actual
Kraus representation of the system which is not unique as mationed in Sec-
tion 2.3, and according to [5] with appropriate operator element set it can
be made as large as desired, thus it is sensible to search fug Kraus element
set which minimizes the Helstrom information. In this work lowever | do not
address this problem, but consider the Kraus representatioxed.

4.2 Numerical solution

For the numerical solution as in Chapter 3, MATLAB R2008b envionment
augmented with Maple Toolbox for MATLAB software package ws.again used.
The numerical optimization however was performed with the eperal solver
fmincon, which is part of the built in Optimization Toolbox of MATLAB .

4.2.1 Calculation of Helstrom information

The solution of the above optimization problem involves rsthe calculation
of the Helstrom information. For this, a MATLAB function was made based on
the formula (2.29) (see Subsection B.2 for its code). The essial part of this
calculation is the solving of the equation (2.30), which isiifact a linear matrix
equation in the variableLy. According to [23] this equation can be transformed
into the following form:

@ )+ " 1) vec(l)=vec(_);

wherevec() is de ned as follows. LetA be ann m matrix. Then vec(A) is
the m n dimensional vector, which we get by stacking all the columns A on
top of one another. Thus, in this way, the matrix equation carbe transformed
into a linear equation system, which can be solved by MATLAB sing the built
in methods.

4.2.2 The experiment setup

Secondly, a method is needed to search through the part of teate space
which contains the feasible solutions, and start the optimation method from
several di erent initial solutions. This can be done the fdbwing way. Starting
from the vectoru( ), we rotate it around the axis appointed by the vecton by
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4.3. Results

some anglé chosen from the interval[0; 2 ]. The rotation algorithm consists
of the following steps:

A

Rotate the space around thez axis so that the rotation axis lies in the
X-z plane.

A

Rotate the space around they axis so that the rotation axis lies along
the z axis.

~ Perform the desired rotation by' around the z axis.

" Do the inverse of the second and then the inverse of the rsttap.

This way, if we perform the optimization for' angles chosen su ciently dense
in the interval [0; 2 ], the optimal measurement direction can be found almost
certainly. Based on some test calculations, the step ¢f radians had proven
to be enough for this purpose.

Thus, the experiments consisted of the following steps:

~ An input state was selected, either pure or mixed.

" A channel was selected from the example channels in Subsent2.3.1. |
considered each channel with two di erent values of their pameters, one
corresponding to a weaker, and one corresponding to a strenghannel
e ect.

" The u( ) Bloch vector, itsu( ) derivative and the Helstrom information
H( ) was calculated for the parameter value.

~ The optimization problem was solved with di erent initial solutions based
on the rotation of the angle’ .

4.3 Results

As a result from the experiments, the optimal measurement idiction for
which the Fisher information attains the Helstrom informaton for the given
value was found.

The results were plotted on the Bloch sphere for each expeemt. The
two channel strength values were = 0:3 and = 0:9, however based on
the argument in Section 3.3, the values for the phase dampimfpannel were
chosento be =0:7and =0:1also in these experiments. On each gure, the
trajectory of the channel output states as a function of thel@annel parameter
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4. Experiment design

can be seen with green color. The input state is denoted by adrgector, and
the optimal measurement direction with a blue diagonal.

In each case, the optimal pair of antipodal Bloch vectors casponding to
the optimal measurement direction is also given, with the Vae of the Hel-
strom information. The Fisher information, following fromthe optimality of
the measurements, has the same value.

4.3.1 Experiments with pure input state

The input state in this experiment was the pure state with theBloch vector
2 3
r

1 1
X = :—391%
1

The amplitude damping channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.1. The
case of parameter = 0:3is on Figure 4.1a, and the case of parameter=0:9
is on Figure 4.1b.

This case shows that as the state gets near to the surface oktBloch
sphere, the optimal measurement direction also gets clogerthe direction of
the Bloch vector of the channel output state. An experiment @n rming this
is described at the end of this subsection.

The Bloch vector pairs correspoding to the optimal POVM for his channel

are 2 3 2 3
0:690 0:021
for =0:3: 90:69(% ; and for =0:9: 9 0:021% ;
0:212 0:999

and the value of the Helstrom and Fisher information is equigl 0:450 for the
weaker channel, and:162 for the stronger.

The phase damping channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.2. The
case of parameter = 0:7 is on Figure 4.2a, and the case of parameter=0:1
Is on Figure 4.2b.
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4.3. Results

Figure 4.1. The Bloch spheres with the trajectory of the chamel output states as a function
of the channel parameters for the amplitude damping channelwith pure input state. The

channel trajectory is pictured with green color,

the input state is denoted by a red vector,

and the optimal measurement direction with a blue diagonal. The weaker version of the

channel can be seen on Figure (a), and the stronger on Figureby.
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Figure 4.2. The Bloch spheres with the trajectory of the chamel output states as a function
of the channel parameters for the phase damping channel witlpure input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The we&er version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

Here we can also see in the case of the stronger version of thannel that
for a near pure state, the optimal measurement is near to thexia de ned by
the channel output state.

The Bloch vector pairs correspoding to the optimal POVM for his channel

are 2 3 2 3
0:680 0:615
for =0:7: 20:680% ;and for =0:1: 2 0:615% ;
0:272 0:492

and the value of the Helstrom and Fisher information is equigl 3:174 for the
weaker channel, and’:407 for the stronger.

The depolarizing channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.3. The
case of parameter = 0:3 is on Figure 4.3a, and the case of parameter= 0:9
is on Figure 4.3b.

It can be clearly seen from the results for the depolarizindhannel that it
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Figure 4.3. The Bloch spheres with the trajectory of the chamel output states as a function
of the channel parameters for the depolarizing channel withpure input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The we&er version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

Is very special in the sense that the optimal measurement dution for this
channel is always in the axis de ned by the Bloch vector of thenput state.
Moreover, as the full trajectory of the channel in function bthe parameter
lies in this direction, the optimal measurement is the sameof all values
of , i.e. the Helstrom information can be attained by the Fishemformation
uniformly over . This result agrees with the ones described in [5].
The Bloch vector pairs correspoding to the optimal POVM for his channel

are 2 3 2 3
0:577 0:577

for =0:3; 90:57% and for =0:9; 20:57% ;
0:577 0:577

and the value of the Helstrom and Fisher information is equigl 1:960 for the
weaker channel, andL:010for the stronger.

The case of almost pure output states

Here an example is shown for the case of the amplitude and phatamping
channels with = 0:01, which means that the state is almost pure in each
case. As in the previous cases, the state, its trajectory asfanction of the
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(@) (b)

Figure 4.4. The Bloch spheres with the trajectory of the chamel output states as a function of
the channel parameters for the case of almost pure channel tputs. The channel trajectory
is pictured with green color, the input state is denoted by a red vector, and the optimal
measurement direction with a blue diagonal. The amplitude camping channel can be seen
on Figure (a), and the phase damping channel on Figure (b).

channel parameter and the optimal measurement direction féhese channels
are depicted on Figure 4.4a and 4.4b respectively.

These results clearly show that if the state is pure, then theptimal mea-
surement direction is the direction of the Bloch vector of th channel output
state.

The Bloch vector pair correspoding to the optimal POVM for tle amplitude

damping channel is ) 3
0:579

90:57% ;

0:572

and for the phase damping channel

2 3
0:581

9 0:581g :
0:569

The value of the Helstrom and Fisher information is equally:679 for the
amplitude damping channel, and7:340for the phase damping channel.
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Figure 4.5. The Bloch spheres with the trajectory of the chamel output states as a function
of the channel parameters for the amplitude damping channelvith mixed input state. The
channel trajectory is pictured with green color, the input state is denoted by a red vector,
and the optimal measurement direction with a blue diagonal. The weaker version of the
channel can be seen on Figure (a), and the stronger on Figurebj.

4.3.2 Experiments with mixed input state

The input state in this experiment was the mixed state with tle Bloch

vector 2 3
T
X = E :—%2 11g .

The amplitude damping channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.5. The
case of parameter = 0:3is on Figure 4.5a, and the case of parameter= 0:9
is on Figure 4.5b.

We can see in this case, that it is very similar to the case witpure input
state. It also can be seen again that for a near pure channeltput, the optimal
measurement direction is close to the direction of the Blockector of the
channel output state.

The Bloch vector pairs correspoding to the optimal POVM for his channel
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(@) (b)

Figure 4.6. The Bloch spheres with the trajectory of the chamel output states as a function of
the channel parameters for the phase damping channel with nxied input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The we&er version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

are 2 3 2 3
0:122 0:006
for =0:3 2 0:122123 ; and for =0:9: 2 0:006.2) ;
0:984 0:999

and the value of the Helstrom and Fisher information is equigl 1.722 for the
weaker channel, and:889 for the stronger.

The phase damping channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.6. The
case of parameter = 0:7 is on Figure 4.6a, and the case of parameter=0:1
is on Figure 4.6b.

The Bloch vector pairs correspoding to the optimal POVM for his channel

are 2 3 2 3
0:706 0:703

for =0:7; 9 0:706g cand for =0:1; 90:701% ;
0:051 0:102

and the value of the Helstrom and Fisher information is equigl 0:686 for the
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(@) (b)

Figure 4.7. The Bloch spheres with the trajectory of the chamel output states as a function
of the channel parameters for the depolarizing channel wittmixed input state. The channel
trajectory is pictured with green color, the input state is denoted by a red vector, and the
optimal measurement direction with a blue diagonal. The we&er version of the channel can
be seen on Figure (a), and the stronger on Figure (b).

weaker channel, and:754 for the stronger.

The depolarizing damping channel

The state, its trajectory as a function of the channel paranter and the
optimal measurement direction for this channel can be seen &igure 4.7. The
case of parameter = 0:3is on Figure 4.7a, and the case of parameter= 0:9
is on Figure 4.7b.

This experiment also shows the properties discussed in thase of pure
states.

The Bloch vector pairs correspoding to the optimal POVM for his channel

are 3 2 3
0:577 0:577
for =0:3; 2 O:577% and for =0:9; 9 O:577% ;
0577 0577

and the value of the Helstrom and Fisher information is equigl 0:284 for the
weaker channel, and:250for the stronger.
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4.4 Discussion

The following conclusions can be drawn from the experimenébove. The
optimal measurement direction for which the Fisher informigon attains the
Helstrom information for the given value was found in each case.

We can see that the results do not depend signi cantly on thenput state,
rather on the shape and direction of the channel trajectoryl'he input only
seemed to a ect the attainable Helstrom information.

If however the channel output was pure, or nearly pure then & optimal
measurement direction was always in the axis de ned by the tput state, or
it is near to that axis.

The case of the depolarizing channel was special, as the aml measure-
ment direction for this channel was always in the axis de nedby the Bloch
vector of the input state. From this, it follows that the optimal measurement
Is the same for all values of, i.e. the Helstrom information can be attained
by the Fisher information uniformly over the domain of the paameter.
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Chapter 5

Conclusion

5.1 Results

In this thesis, as the rst main objective, the problem of quatum pro-
cess tomography for two level quantum systems was considiréd numerical
method based on convex optimization was de ned and solvedh& aim was to
test the performance of the method on pure input states, mixkeinput states,
and multiple pure input states.

In the tests, three estimation performance measuring quaties were used.
The delity of the output states given by the true channelE and the estimated
channelE, the Hilbert Schmidt distance of the true and estimated Chd ma-
trices and the empirical covariance of the estimates.

The results show that for channel estimation, abouf00 or 300 measure-
ment is nesessary, if only one input state is used. Howevelrmultiple input
states are used, then more measurements are needed (ab500, but the
estimation performance increases signi cantly.

It can also be concluded, that with pure inputs, more accuratestimation
can be carried out than with mixed input states.

The second objective of this work was to derive and solve antopization
problem on the experiment design of two level quantum systenfor the case
of single parameter quantum channels.

In this work, the problem of nding the optimal measurement vas con-
sidered. The optimal POVM was identi ed with an antipodal par of Bloch
vectors, and the optimum was searched in this form. Experimé&s were per-
formed to investigate the behaviour of the optimum for pure rad mixed input
states.

As a result from the experiments, it was found that in the the ptimal
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5. Conclusion

measurement direction, the Fisher information always atias the Helstrom
information for the given parameter value.

The experiments also show that the results do not depend sigrantly on
the input state, rather on the shape and direction of the charel trajectory. If
however the channel output is pure, or nearly pure, then theptimal measure-
ment direction is always in the axis de ned by the output stae, or it is near
to that axis.

The case of the depolarizing channel is special, as the opsihmeasurement
direction for this channel is always in the axis de ned by theBloch vector of
the input state. For this channel the Helstrom information @n be attained by
the Fisher information uniformly over the domain of the paraneter.

5.2 FRurther work

The main objective for the continuation of this work is to exend the im-
plemented quantum process tomography and experiment designethods to
higher level quantum systems. It is not an easy task, as in thgeneral case,
the very expressive Bloch vector picture gets too complicad to remain useful
in practice. Therefore, some other parameterization is néed, which can be
used as easily in the general case, as in two level systems.

A second goal would be to take in account also the dependencetioe input
state, and try to derive an experiment design method also fahe nding of
the optimal input.

As | mentioned in Section 4.1, the optimal experiment desigalso depends
on the actual Kraus representation of the channel. A furthework could be to
perform the minimization over the possible Kraus represeations to achieve
some form of indepencende from the used operator element set

Also in connection with the experiment design problem, the athod pre-
sented in this work could be extended to be able to handle migte tomography
con gurations.
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Appendix A

Axiomatic principles of quantum
mechanics

The purpose of this appendix is a short overview, not the fuknd mathe-
matically precise exposition of the axiomatic structure ofjuantum mechanics.
In the following sections | mostly rely on the works of [7, 8].

A.1 States of quantum systems

In the mathematical model of quantum mechanics, the state ofie system
is represented by a vector of thédilbert space The conventional notation for
these is thej i Dirac ket symbol. Also by the Dirac notation, the scalar
product of two vectors is denoted byh j i, where theh j so-called bra
vector is the natural pair ofj' i in the dual space® Actually, those vectors of
the Hilbert space, which dier only in a nonzero scalar facto describe the
same physical state, thus any state can be written with @ormalized state
vector:k k=hj i*?2=1.

As the sum of two vectors is also an element of the Hilbert spaahe sum is
also a possible quantum state. In quantum mechanics, we ciis the principle
of linear superposition

Any quantum state can be written as a linear combination of a@rbitrary
orthonormal basis of the Hilbert space:

X
ji= jii; i=hji2 C; (A.1)

i=1

8In the case of Hilbert spaces, the space and its dual can be idémed naturally through
the scalar product.
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A. Axiomatic principles of quantum mechanics

wherejii is the ith basis vector of the Hilbert space, and ; is the probability
amplitude of the basis statejii, whose absolute square gives the probability
of the transition from the state] i to the basis statejii. This gives that the
normality condition of state vectors can also be formalizeth the following
way:

j?=1 (A.2)

It is important that a j i vector multiplied by some€e (j& j = 1) phase
describes the same physical state, in other words the degtion of the physical
state by a state vector is unique only apart from global phasén case of two
superposed states however, the phase dierence between t@responding
state vectors is relevant.

A.2 Measurement

In quantum systems theobservablesre represented by self-adjoint (or Her-
mitian) operators, which mathematically mean linear maps é&tween vectors,
le.

A(Cj i+ j'i)= Aj i+ Aj'i; (A.3)

moreover the condition of self-adjointness:
HjA] i=hjAj"i; (A.4)

where denotes complex conjugation. For all self-adjoint operatdhere exists
a spectral decompositionin the following form:

X
A= m;P; ; (A.5)
i=1
where P; is a self-adjoint and idempotent projection operator, whit realizes
the orthogonal projection onto theith eigenspace. If this eigenspace is one
dimensional, thenP;=jiihij. The m; is the eigenvalue belonging to thath
eigenspace, which is in all cases a real number,Aass Hermitian.

The connection between the result of the measurement of thfe physical
guantity and the A operator belonging to theA quantity is the following. The
result of the measurement is always am; eigenvalue, and the probability that
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A.2. Measurement

the outcome of the measurement will ben; is
hjPij i =jhij ij?; (A.6)
and then the (normalized) state after the measurement will & the
Pij i hji

b2 = - iji =€l jii A7
Chipg i hij i : (A7)

eigenstate. As

T is a unit length complex number (global phase factor), we
can omit it.

Thus during the measurement thej i state changes, the measurement
makes it jump into one of thejii eigenstates of the measured physical quan-
tity's operator. Following from the properties of theP; projection, performing
the same measurement two times, if it resulted im; for the rst time, then
in the second time we will also gei; with 1 probability.

From the foregoing it also follows that if we want to know the gpected value
of the measurement, or which is the same, the average of mangasurements,
then the calculation method of this is the following:
h jAj i

ML= 1T

(A.8)

The measurement formalism discussed above is callgjective measure-
ment or von Neumann measurement. In some applications howevdrisi more
convenient to use a di erent, more general type of measuremtecalled POVM
(Positive Operator Valued Measure).

The POVM can be de ned by anfM;g set of positive operators, each of
which is related to the possible measurement outcomgeand which satisfy the
equation

M =% (A.9)

The positivity of the operators ensure that all the outcome mbabilities are
positive, and the constraint A.9 is necessary for these prabilities to have a
sum of 1.

The probability that the outcome will be i is
h jMij i ; (A.10)
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and the state after measurement can be computed as
Qij i .
q: y (A.ll)
h jQQij i

whereQ; = P M; is the operator associated with theth outcome.

The POVM formalism is more general, because it describes @lhe pro-
jective measurement as a special case, when thd;g set of POVM elements
are projections. However, it can be proven that the POVM and nojective
measurements can be made equivalent in the sense that evei®\MM can be
realized by performing a projective measurement on a largsystem.

A.3 Time evolution

The time evolution of a closed quantum system can be describly a linear
di erential equation, the Schrodinger equationIf we denote the state of the
system with | (t)i, then the Schrédinger equation is the following:

d. A .
aj (Oi= —Hj ()i; (A.12)

where ~ is the Planck constant, andH is the Hamiltonian, which is the self-
adjoint operator belonging to the energy as physical quaryi
The spectral decomposition of théd operator also can be written:
X
H= Eijeihej : (A.13)
i=1
Here we call thejgi states energy eigenstates, and tHe number is the energy
of the jegi state.
If H does not depend explicitly on time, then the energy eigensés are
just the stationary statesof the system. In this case we can write the solution
of the Schrédinger equation in the a following form:

i (i=e ="y (0)i: (A.14)

This formula shows, in what nalj (t)i state will the initial j (0)i state
get into after t time elapses, so the operator

Uit)=e =t (A.15)
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in it is called time evolution operator. An important feature of this is unitarity,
as just an unitary operator can guarantee the condition thaif the initial state
was normalized, then the nal state must also be normalizedlhis must be
true, as it can be seen from the comparison of the equations.@) and (A.6)
that the norm of the state can be obtained by summing all the mbabilities of
a projective measurement's possible outcomes, and this adysly must be 1.

If there are time dependent external elds present, and thuthe Hamilto-
nian of the system explicitly depends on time, then the cono#@on of U(t) time
evolution operator andH(t) can only be described a litte more complicated
than formula (A.15), but unitarity as it does not a ect the r easoning in the
previous paragraph will continue to remain true.

Thus we can see that the state of a closed quantum system bebawle-
terministically in time, as long as we do not perform a measement on it.
The result of the measurement is completely random, so afténat the state
already evolves nondeterministically, according to the pbabilisticness law of
guantum mechanics it jumps into an eigenstate.

A.4 Open systems

Until now, | only considered closed systems. But in realityg quantum sys-
tem can never be perfectly closed. The interaction with thengironment (other
systems), from which noises, disturbances arise, is thusezts the system.

If we want to study an open system, we can consider the systertosed
together with its more or less wide environment. The state sgge of composite
systems can be obtained as the tensor product of the state spa of the sub-
systems, i.eHxg = Hy H g, whereH, and Hg is the Hilbert space of the
two subsystem. The dimension off o5 is the product of the dimensions of the
Ha and Hg spaces. An arbitrary state of theH og space can be written in the
following way:

X X
= j Jil j ji; orinshortj i= i Jij; (A.16)

1) I3
wherefjiig and fj jig are orthonormal bases for the Hilbert spaced » and

H B-

In reality, the description of the bigger system composeddm two sub-
systems in quantum mechanics holds a lot more curiosity andrange com-
plication, than we would think at the rst glance. For example, let us take a
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bipartite system, whose both subsystems are two-state, i.bas two mutually

orthogonal states, which we denote withOi and jli. As it is a possible state
of the system that both subsystems are in the stat®i, and it is also possible
that both are in the state j1i, according to the law of superposition

ji= 0of0i j Oi+ 1qj1i j i (A.17)

Is also a possible state. We call such a state thentangled state of the two
subsystems, or otherwise we say that the state of the two sylstems are cor-
related. The meaning of this typically quantum mechanical arrelation is the
following. Let us assume that we measure the rst subsysteno tdecide if it is
in the jOi or in the jli state. We can do this with an appropriately choosen
physical quantity, and according to the precedingly discisgd rules, we get that
with j oj2 probability it is in the state jOi, and with j 14j® probability, it is
in the state j1i. At the same time however according to the rule (A.7) the
measurement changes the state (A.17), and after the measorent the state
of the full system will either bejOi j Oi (with j ooj? probability) or j1i j 1i
(with j 11j2 probability). Thus the measurement performed on the rst sbsys-
tem changes also the state of the second subsystéfilafter this we measure
the state of the second subsystem, then we will nd it quite againly in the
state, in which the rst subsystem also was. We call thiguantum correlation
and quantum information in turn is that by the rst measurement we get in-
formation also on the state of the second subsystem, withoperforming any
measurement on it.

In the case of bipartite systems it is very common, that we arenly inter-
ested in the behaviour of one of the subsystems, or maybe we amly able
to perform measurement on one of them. Assume for example tithe other
subsystem is very far away, or it is so complex, that we can naetermine
its state precisely. In theory the state vector of the full sstem exist, only in
practice we do not know it or we are not interested in it.

Let us again take the example of the bipartite state (A.17). @ the rst
subsystem, we perform a measurement relating to @& attribute, let the oper-

"The weirdness in this is that during the measurement, the twosubsystems can be at any
distance form each other, still in the moment of measurementhey both change. This is the
basis of Einstein, Podolsky and Rosen's famous argument, byhich quantum mechanics can
not be a good description of nature, as by what reason would té state of a system lightyears
away changeinstantly just beacuse we performed a measurement on another systenm the
last one or two decades however physicists managed to perfarsuch measurements, and
according to all indications the predictions of quantum medanics match reality, despite
how strange it is.
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ator of this be A, the operator acting on the state space of the rst subsystem
As this physical quantity does not depend at all on the statefdhe second sub-
system, it is described by theA % operator acting on the state space of the
composite system. The expected value of this measuremenhdze calculated

based on formula (A.8). Assuming that (A.17) is normalizedye get that

hiA 4 i=] o2M0jAJOi + ] 11j2hLAjLi (A.18)

We would get the same result if we assume that the rst subsysin is in state
joi with j goj? probability, and in state jli with j 1.j2 probability. As this

expression is true for the measurement of an arbitrara quantity related to

the rst subsystem, we can interpret the result also as if therst subsystem

would be in the suitably weighted statistical mixture of thestatesjOi and j1i,

using proper terminology, in theensembleof these two states. Furthermore it
can be shown that (A.18) gives exactly the same as the

hAi = Tr( A) ; (A.19)

expression, where
=} 00f%j0i0j + j 11j%j1ihdj : (A.20)

All this means that the information that can be gained from dl possible
measurements related to the rst subsystem is contained irhé operator ,
which we calldensity operator

All this can be generalized to an arbitrary open system, to wth the state
vector formalism can no longer be applied directly without e detailed de-
scription of the state of the environment. In such case namethe states can
not be represented by the vectors of the Hilbert space, fuénmore the mea-
surement can not be described by orthogonal projection, nieer is the time
evolution unitary. In case of open systems thus we must use ather, more
appropriate mathematical tool, this is thedensity operator formalism

With the help of density operators (or density matrices) the mioms of
guantum mechanics can be formulated in the same way in the easf closed
systems, as with state vectors. The di erence between the onvdescriptions
resides in the fact that with density matrices we can handlelso open systems
with ease.

The general de nition of the density operator is the followng. If the open
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system taken together with its environment is in the

X
ji= i i (A.21)
|
normalized state, then the density operator describing thetate of the rst
subsystem: X
=Tru,( ih j) i jediingj (A.22)
isj;k
The Try, notation has to be interpreted such that we get the density agrator
describing the state of the rst subsystem as the partial trae of thej ih |
operator, applied to the degrees of freedom of the second syftem (environ-
ment).
For example it can immediately be seen that the density opei@ of a
closed system in the state i is the following projection:

=j ih j: (A.23)
The general properties of the density operator:
" The trace of its matrix is 1,i.eTr( )=1,
© Self-adjoint, i.e. = Y,
" Positive semide nite, i.e. forallj ih jj i O.

From all this it follows that can be diagonalized, and its eigenvalues are real,
nonnegative and sum tdl. The density operator is thus can always be brought
to the following form: X
= wy  jKihkj : (A.24)
k

Similarly to what was said above on the example of the compusisystem de-
scribed with the state vector (A.17), this can be interpretd such that the w
eigenvalues give the probability that the system is in the ste jki. The density
operator can thus be understood as if it described th&atistical mixture, en-
semble of pure states. If eithewy probability is 1, and the others areQ, then
the system is inpure state i.e. can be described solely with the corresponding
jki state vector (see equation (A.23)). In case of pure stateis idempotent,
i.e. 2=, and hence it also holds thaflr( 2) = 1. In any other case we call

the state mixed
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A.4. Open systems

An important example of using the density operator is the desiption of
projective measurement. As | said in subsection A.2, aftehé measurement the
system with initial state j i will be in one of the eigenstates of the measured
guantity. That in exactly which, we know by reading the measted value from
the measuring device, which value is an eigenvalue of the rsaeed quantity's
operator, and the eigenstate related to this eigenvalue d@i#es the system
after measurement. But if we do not read the device (as for exgle we can
not do that), just simply know, that a measurement was perfaned, then we
know that the system can be written as the statistical ensenhd of the (A.7)
eigenstates taken with (A.6) weights, i.e. the initial = j ih j density operator
goes into the following ©

°= P P (A.25)

It is easy to see that this formula is true even if the system vganot in a pure
state before the measurement.

The time evolution of the density operator given with formuh (A.23) of a
closed system can be described easily by tbleunitary time evolution operator
resulting from the solution of the Schrédinger equation:

() =U(t) OQU(t) :

The time evolution of subsystems of composite systems by theelves do
not nesessarily happen unitarily, so it can not be describedith the above
formula. But the state of the subsystem can obviously be gimewith a den-
sity operator further on, so we can describe time evolutionsaa map taking
density operator to density operator. Because of the genéaroperties of the
density operator this map has to be such, that it preserves éhtrace and posi-
tive semide niteness of the operator. Such maps between optors are called
superoperators

Sometimes it is nesessary to be able to handle a mixed statescébed by a
density operator with state vectors. Then we have to take theystem together
with its environment, and nd such state of this bigger systen, which according
to de nition (A.22) just leads to the desired density operator. This is called
the puri cation of the mixed state. The procedure is of course not unique, the
system and its environment as a whole can have many states wainigive the
same mixed state of the system.
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A.5 The quantum state tomography problem

As it was discussed in Section A.2, the quantum measuremertts as dis-
turbance on a quantum mechanical system, moreover it is prabilistic. Thus
if one measures a certain quantum system it is not possible t@ave enough
information from a single measurement. Furthermore, a sawd identical mea-
surement on the same system cannot be performed since thet mseasurement
changed the state so we need a somawhat relaxed problem stagat for state
tomography.

In order to avoid the above di culties we will assume that su ciently many
identical copies of the system is available for measuremeiithis way, we can
perform measurements on each one of the identical quantumssggms, that is
each system is measured only once and the next measurememdasormed on
the next copy [24]. This makes the state of the system after éhmeasurement
irrelevant, and we can also omit the system dynamics thus ecéively the task
is reduced to a parameter estimation problem.

The goal of state tomography in this context is to determinette density
operator of a quantum system by performing measurements anidentical
copies of the quantum system. The number corresponds to the sample size in
classical mathematical statistics. An estimation scheme then a collection of
measurements and an estimate for every. In e ect the estimate is a mapping
de ned on the measurement data and its values are density ap¢ors. For a
reasonable scheme, we expect the estimation error to tend@avhen n tends
to in nity (i.e. we expect to have an asymptotically unbiasel estimate) as a
consequence of the law of large numbers.
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MATLAB scripts

B.1 Scripts for quantum process tomography

GetProcessData.m

function D=GetProcessData(configset ,h processS , paramset,exprve c)

% ==

%Generates measurement data for process tomography. (qubit ¢ ase: n=2)

%

%con gset: Set of input states and corresponding measurement —operators

% (ncfgx2 cell of nxn matrices in rst column and 1x(max npovm) cells

% of N n matrices, npovm: number of outcomes) (there are not nesessar ily

% npovm elements in a povm, can be less)

Y%processS: Parametrised operator element sets or Choi matrix  of process,

% ncfg: number of con gurations)

Y%paramset: contains parameters and their estimated values

% (mx2 cell of (symbol,scalar) pairs)

Yexprvec: Vector of experiment numbers in each con guration

% (input, state/process, povm) (ncfgxl matrix)

%

%D: Set of measurement outcomes: D(j,k)=count of k-th outcome inj  -th

%con guration (ncfg 1 cell of 1 (max npovm) matrices)

% ==
n=length (configset{1}); % dimension of system
ncfg=length (exprvec);

%check completeness relation for povm-s
where E_i=M_i"*M_i)
for j=1:ncfg
sum=zeros (n);
for k=1:length (configset{j,2})
sum=sum+configset{j,2}{k};
end
if (nom (sum eye (n), 'fro')>10" 9) % this is a precision threshold
error ('POWM set %d does not satisfy completeness!
Error is %e',j, nom (sum eye(n), 'fro"'));
end
end
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B. MATLAB scripts

% de ne measurement output set
D=cell(ncfg,1);
for j=1:ncfg
D{j}= zeros (1,length (configset{j,2}));
end

% substitute process parameters
process=Substitute (processS , paramset);

% get output states from process
outputset=cell (ncfg ,1);
for j=1:ncfg
outputset{j}=Process(process ,configset{j});
end

for j=1:ncfg
for k=1:exprvec(j) % measure exprvec(j) times
ex=Measure (outputset{j},configset{j,2});
D{j}(ex)=D{j}(ex)+1;
end
end

end

function mEMeasure(state ,povm)
%rand(‘state’,sum(100*clock));
r=rand ;
start=0; %start of interval [0,1], which is partitioned to parts ...
with length proportional to the outcome probabilities
for j=1:length (povm)
p=trace (povm{j}*state);
if (r<start+p) % if r is in interval start+p, then r falls ...

into part of p, so the j th outcome measured.
nEj;
break ;
end
start=start+p;
end
end
ProcessTomography.m

function [sol , Xopt]=ProcessTomography (D, configset ,varargin)
Uy ==

Y%Estimates scalar channel paramter (or Choi-matrix X) of a proc  ess from the following:

%

%D: Data set of measurement results (ncfgxl cell of 1x(max npov m) matrices,

% ncfg: number of con gurations)

%con gset: Set of input states and measurement operators (ncf gx2 cell of

% nxn matrices in 1st column and of 1xnpovm cell of nxn matrices in 2nd column)

%

%sol: Solution to the optimization problem (minimum of log-lik  elihood function)

%Xopt: Optimal estimator Choi-matrix of the unknown process

% ==
n=length (configset{1l}); % dimension of system
ncfg=size (configset ,1); % number of con gurations
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if

(nargin <3) % if no YALMIP con guration is given

silent=0;

X=sdpvar(n”2,n”2, "hermitian', 'complex"');

CONS= set (X>=0,'Positive semidefinite ')+
set (PartialTrace(X,2,[2,2])== eye (2), 'Trace preserving');

setting=sdpsettings('solver', 'sdpt3', 'verbose', 1,
'showprogress',0, 'cachesolvers',1, 'allownonconvex', 1,
'sdpt3.gaptol',1e 9,'sdpt3.scale_data',6l);

% The choi matrix as variable

else
X=varargin{1};
CONS=varargin{2};
setting=varargin{3};
end

obj=0;
for j=1l:ncfg
for k=1:length (configset{j,2})
pemp=D{j}(k)/ sum (D{j});

R=kron (configset{j}.',configset{j,2}{k});

obj=obj+(pemp trace (X*R))"2;
end
end
solvesdp (CONS, obj, setting );
sol=double (obj);
Xopt=double (X);
end

B.2 Scripts for experiment design

HFoptimize.m

function
% Specify input state

input =Bloch2Density (bloch ,1);
global outS paramset H
syms p

% Specify process
Amp{1}=[1 0;0

Amp{2}=[0  sqrt (p);0 O];

sqrt (1 p)]; % Amplitude damping

[H,F,povm, paramsopt]=HFoptimize (bloch , pval , init , pre c)

Pha{l}= sqrt (p)* eye (2); % Phase damping channel

Pha{2}= sqrt (1 p)*[1,0;0, 1];

Dep{l}= sqrt (1 3/4*p)* eye (2);
Dep{2}= sqrt (p/4)*[0,1;1,0];
Dep{3}= sqrt (p/4)*[0, 1i;1i,0];
Dep{4}= sqrt (p/4)*[1,0;0, 1];

% Parameter values
paramset={p, pval};

processS . op=MakeChoi(Amp);
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processS .domain=[0,1];
outS=Process(processS ,input );

out=Substitute (outS, paramset); % get the normal of the plane
difS=diff (outS);

dout=Substitute (difS , paramset);

bout=Density2Bloch (out);

bdout=Density2Bloch (dout);

n=cross (bout, bdout);

H=CalcHelstrom (outS , paramset);

% Constraints

A=I[]; % Inequality constraints A*x <= b
b=[];

Aeg=n.'; % Equality constarints Aeq*x = beq
beq=0;

Ib=[]; % Bound constraints Ib <= x <= ub
ub=[];

nonlin=@Nonlin; % Nonlinear constraints (see help)

% Initial solution (does not matter if objective is convex)
init=init/ nom (init, 'fro");

opts=optimset('Display "', 'off"', 'FunValCheck','on"','T olFun',10"

count=0;
glob=inf;

num=0;

popt=[0,0,0];

DrawBloch;

local =[];

for phi=0:( pi/prec):2* pi
idx=1;
init=Rotate (bout,n, phi);

9); % iter

[paramsopt, sol]=fmincon(@FisherObj, init ,A,b,Aeq,beq ,Ib,ub,nonlin,opts);

paramsopt=paramsopt/ norm (paramsopt, 'fro');
linemat=[init."; paramsopt. '];

line (linemat(:,1),linemat(:,2),linemat(:,3), 'Color',[0, 0,0]/255);

drawnow
for j=1:length (local)
if (abs(local(j) sol)<10™ 8)

idx=0;
break
end
end
if (idx>0)
num=0;

fprintf ('\nFound local minima: %f\n',sol);
local (end +1)=sol;

DrawDiagonal (paramsopt); % to see where local minimas are

drawnow
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end
if (sol<glob)
glob=sol;
popt=paramsopt;
end
count=count+1;
for j=1:num, fprintf ('\b'); end

num= fprintf  ('Processing %d, angle=%f global solution is %f",

count, phi*180/ pi ,glob);
end
fprintf  ('\n");
paramsopt=popt;
sol=glob;

FH sol;

paramsopt=paramsopt/ norm (paramsopt, 'fro");
den=Bloch2Density (paramsopt);

povm={den, eye(2) den};

% Drawing

DrawBloch;

DrawProcess(processS ,input ,50);
out=double (subs(outS,p, pval));

DrawState (out,' ',[255,0,0]);
DrawDiagonal (paramsopt. ');
end

function D=FisherObj(povmparams)

%

%Calculates Fisher information matrix for a parameterised de
% matrix with given POVM set.

%

%rhoS: parameterised density matrix (n n symbolic matrix)
%povm: the cell array containing POVM elements to measure
% (Fisher information depends on the measurement)
Y%paramset: contains parameters and their estimated values
% (m 2 cell of (symbol,scalar) pairs)

nsity

%

global outS paramset H

rhoS=outS;
rho=Substitute (rhoS , paramset);
m=1;

eleml1l=Bloch2Density (povmparams,1);
elem2=eye (2) eleml;
eleml=eleml '*eleml;
elem2=elem2 '*elem2;

povm={elem1 6 elem2};
Fmat= zeros (m"2); % Fisher matrix
for pl=1m

drhoS=diff (rhoS);

drhol=Substitute (drhoS , paramset);

for p2=1m
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drhoS=diff (rhoS);
drho2=Substitute (drhoS , paramset);

% make Fisher matrix element for parameter indices pl and p2
f=0;
for a=1:length (povm)
if (norm (povm{a}, 'fro ")<10” 9)
continue;
end
f=f+( trace (povm{a}*drhol)* trace (povm{a}*drho2))/
end
Fmat(p2,pl)=f;
end
end
D=norm (H Fmat, 'fro");
end

function [c,ceq]=Nonlin(x)
c=[]; % Compute nonlinear inequalities at x.

ceg=norm (x, ‘fro') 1; % Compute nonlinear equalities at
end

CalcHelstrom.m

function [H,acc]=CalcHelstrom(rhoS , paramset)

%
%Calculates Helstrom matrix for a parameterised density matr  ix.
%

%rhoS: parameterised density matrix (n n symbolic matrix)
Y%paramset: contains parameters and their estimated values

% (m 2 cell of (symbol,scalar) pairs)

%
%n=length(rhoS); acc=zeros(1,3);
m= size (paramset,1);
rho=Substitute (rhoS , paramset); % Get numerical value of rho
H=zeros (m"2); % Helstrom matrix
for pl=1m
[L1,accuracy]=SolveSLD(rhoS, paramset,pl); % SLD
acc=acc+accuracy;
for p2=1:m
[L2,accuracy]=SolveSLD(rhoS , paramset,p2);
acc=acc+accuracy ;
% make Helstrom matrix
H(p2,pl)=1/2* trace (rho*(L1*L2+L2*L1));
end
end
acc=acc/ size (paramset,1)"2; % average reciprocal condition number
end

function [L,acc]=SolveSLD(rhoS , paramset,idx) % works generally
%
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%Solves symmetric logarithmic derivative equation 2*drhoS =L*rhoS+rhoS*L
% numerically. The parameters are symbolical, but get substitute d with

% param value after getting the derivative.

%

Yparamset: contains parameters and their estimated values

%idx: index of the parameter, with respect to which we calcula te SLD

%

%The algorithm works by transforming the equation into A*vl=v  d form

% (so that Matlab could solve it), where

%

%

%acc: Accuracy of computed L. This vector is the reciprocal cond ition

% number and the maximal absolute element of 2*drhoS-(L*rhoS+r  hoS*L).

% ==
n=length (rhoS); % dimension of the rho matrix
% calculate derivative of rho, and substitute parameters
drhoS=diff (rhoS, paramset{idx,1});
drho=Substitute (drhoS, paramset);
rho=Substitute (rhoS , paramset);
% build coe cient matrix A
A=kron (eye (n),rho)+ kron (rho."', eye(n));
acc(1l)=rcond (A);
acc(2)=norm (A/A eye (n"2),'fro'); % A/B=A*inv(B), but inv is slow
% build vector vd
vd=drho (:);
% solve equation
VIsA\(2*vd);
% extract L form vl
L=reshape (vl ,n,n);
% check if L satis es original equation
acc(3)=norm (2*drho (L*rho+rho*L), 'fro");
end

B.3 Auxiliary scripts

Bloch2Density.m

function  density=Bloch2Density (blochvec,len)

Oc ==
%Transforms a Bloch vector into a density matrix (currently f  or qubits)
%
Y%blochvec: lengths of three Bloch ball dimensions (x,y,z). Only the
% x:y:z rate is important, as the function automatically norma  lizes
% the vector to second parameter (len).
%len (optional): length of Bloch vector. Give 1 for pure state s.
% ==
if (nargin ==1)
len=1;

end
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end

if (len>=0)
blochvec=blochvec/FrobeniusNorm(blochvec)*len;

end

if ((strcmp (class(blochvec), 'sym')==0)&&
(FrobeniusNorm(blochvec) 1>10" 9))
error ('Invalid state!"');

elseif (strcmp (class(blochvec), 'sym")==1)
warning ('id ', 'Can not check validity of symbolic ve ctor!");

end

density=1/2*[1+blochvec (3), blochvec (1) li*blochvec (2);
blochvec(1)+1li*blochvec(2),1 blochvec (3)];

Density2Bloch.m

function [bvec]=Density2Bloch(rho)

%

%Transforms a density matrix into a Bloch vector (currently f  or qubits)

%

%rho: input density matrix.

%

end

if (stremp (class(rho), 'sym')==1) % check if input is symbolic
bvec=sym( zeros (1,3));

else
bvec=zeros (1,3);

end

rho=rho*2 eye (2);

bvec(1)= real (rho(1,2));

bvec(2)= imag (rho(2,1));
bvec(3)=rho(1,1);

bvec=bvec.'; % To give column vector

Process.m

function  out=Process(channel, input )

%

%Calculates the e ect of the channel on the input.

%input:

% - state vector -> channel must be operator element set

% - density matrix -> channel must be operator element

% set or Choi matrix

%channel structure: (can be given as only .op part)

%channel.op:

% - operator element set

% - Choi matrix -> input must be density matrix

%channel.domain: Domain of the channel parameter (not need ed here)

%
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n=length (input ); % dimension of state

out= zeros (n);

if (isstruct(channel))
channel=channel.op; % domain not needed

end

if (size (input ,2)==1)&&(iscell(channel))
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for j=1:length (channel)
out=out+channel{j}* input ;
end
elseif (size (input ,1)== size (input ,2))&&( size (input ,1)==n)&&
(iscell(channel)) % input must be density operator
for j=1:length (channel)
out=out+channel{j}* input *channel{j}";
end
elseif (size (input ,1)== size (input ,2))&&( size (input ,1)==n)&&
(size (channel,1)== size (channel,2))&&( size (channel,2)==n"2)

out=PartialTrace ( kron (input .', eye(n))*channel,l1,[n,n]);
else
error ('Wrong input!")
end
end
PartialTrace.m

function op=PartialTrace ( input ,sysnum,dimvec)

%

%Computes partial trace on a matrix

%

%input: The input matrix (n n matrix)
%sysnum: The index of the subsystem with respect to which we want to trace.
%dimvec: Vector of the dimensions of the two subsystems.

%

switch  sysnum
case 1
op=zeros (dimvec (2));
ket=zeros (dimvec (2),1);
bra= zeros (1,dimvec(2));
for j=0:dimvec(l) 1
for k=0:dimvec(2) 1
for 1=0:dimvec(2) 1
ket (k+1)=1;
bra(l+1)=1;

hmat= input (j*dimvec(2)+k+1,j*dimvec(2)+[+1)*(ket*bra);

op=op+hmat;
ket (k+1)=0;
bra(1+1)=0;
end
end
end
case 2
op=zeros (dimvec (1));
ket=zeros (dimvec (1) ,1);
bra= zeros (1,dimvec(1));
for 1=0:dimvec(2) 1
for j=0:dimvec(l) 1
for k=0:dimvec(1l) 1
ket(j+1)=1;
bra(k+1)=1;

hmat= input (j*dimvec(2)+1+1,k*dimvec(2)+1+1)*(ket*bra);

op=op+hmat;
ket (j+1)=0;
bra(k+1)=0;
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end
end
end
end
end

MakeChoi.m

function  choi=MakeChoi(elements)
%
%Makes Choi matrix from channel operator element set.

%
n=length (elements{1}); % dimension of system
choi=zeros (n"2);
for j=1:length (elements)
choi=choitelements{j}(:)*elements{j}(:)";
end
end

B.4 Drawing scripts

DrawBloch.m

function  handle=DrawBloch(smooth)

%
%Draws a Bloch sphere into a new gure.

%

%smooth: How many faces should the sphere have horizontally a nd vertically
%

%handle: Handle of gure made.

%

if (nargin <1) smooth=30; end

% Create new gure

handle=figure ();

set (0, 'CurrentFigure ', handle);

[X,Y,Z]= sphere (smooth);

colormap ([0,128,255]/255);

surf (X,Y,Z, '"EdgeAlpha',0.3, 'EdgeColor' ,[0,0,255]/255);
alpha (0.2);

set (gca, 'XDir', 'reverse');

set (gca, 'YDir','reverse');
set (gca , 'CameraViewAngle', get (gca, 'CameraViewAngle'));

linemats ={[0,0, 1;0,0,1],[0, 1,0;0,1,0],[ 1,0,0;1,0,0]1};

for j=1:length (linemats)
line (linemats{j}(:,1),linemats{j}(:,2),linemats{j}(:,3)
"Color',[0,0,0]/255, 'LineWidth"' ,1.5);
end
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end

DrawState.m

function DrawState(state , style , color , handle)

V5 ==
%Draws a Bloch vector into the current Bloch sphere gure.
% If handle is given, then to the gure with handle.
%
Y%state: Can be a bloch vector or a density matrix.
Y%color: color in 8 bit RGB format, i.e. white is [255,255,255 1.
% ==
if (nargin <4)
handle=get (0, 'CurrentFigure');
if (isempty (handle))
error ('There is no current figure to draw on!");

end
end
if (ishandle(handle))
set (0, 'CurrentFigure',handle);
else
error ('Wrong graphic object handle!");
end

if (size (state,l)== size (state ,2)) % state is density matrix
state=Density2Bloch(state);

end

origo=[0,0,0];

if (size (state,2)==1) % vector is column
state=state . ';

end
if (stremp (style,' ')==1)
linemat=[origo ; state ];
elseif (strcmp (style,'.')==1)
linemat=[state , state ];
else
error ('Wrong style : Must be " " for line to origin, and ...
"." for just the point.")
end
line (linemat(:,1),linemat(:,2),linemat(:,3), 'Color',col or/255, ...
'LineWidth ' ,2, 'Marker','o"', "MarkerSize',5, '"MarkerEd geColor"',
[0,0,0]/255) %, 'MarkerFaceColor',[0,0,0]/255);
if (stremp (style,' ')==1)
if (norm (state, 'fro')<1)
surfstate=state/ norm (state,'fro');
linemat=[state ; surfstate ];
line (linemat(:,1),linemat(:,2),linemat(:,3), 'Color",
[128,128,128]/255, 'LineWidth',2, 'LineStyle "', )
end
end
end
DrawProcess.m

71



0

10

15

20

25

30

35

40

B. MATLAB scripts

function DrawProcess(processS ,domain, initstate ,precision ,col or,handle)

% =

%Draws the trajectory of parametrised process starting fro m initstate
% into the current Bloch sphere gure.

% If handle is given, then to the gure with handle.

%

Y%processS: Parametrised process (can have only 1 parameter! )
%domain: Domain of the parameter (real interval, ex. [0,1])

%initstate: Can be a bloch vector or a density matrix.

Y%precision: With how many lines should the function approxima te
% the trajectory.

%color: color in 8 bit RGB format, i.e. white is [255,255,255 1.

00 ==
if (nargin <6)
handle=get (0, 'CurrentFigure');
if (isempty (handle))
error ('There is no current figure to draw on!"');
end
end
if (ishandle(handle))
set (0, 'CurrentFigure',handle);
else
error ('Wrong graphic object handle!");
end
if (isequal(size (initstate) ,[1,3])||isequal( size (initstate),[3,1]))
initstate=Bloch2Density (initstate );
end
out=Process(processS ,initstate); % parametrised output
p=findsym (out);
step=(domain(2) domain(1))/precision; % steps in domain
points=domain(1): step:domain(2);
prev=Density2Bloch(initstate);
for j=points
next=Density2Bloch (double (subs(out,p,j)));
linemat=[prev."';next."'];
line (linemat(:,1),linemat(:,2),linemat(:,3), 'Color"',
color/255, 'LineWidth ' ,2);
prev=next;
end
end

DrawDiagonal.m

function  DrawDiagonal(direction ,color ,handle)

% —=

%Draws a diagonal into the current Bloch sphere gure.

% If handle is given, then to the gure with handle.

%

%direction: An (x,y,z) direction vector specifying the

% direction of the diagonal (norm is not important here).

%color: color in 8 bit RGB format, i.e. white is [255,255,255 1.

% ==

if (nargin <3)
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end

handle=get (0, 'CurrentFigure');
if (isempty (handle))
error ('There is no current figure to draw on!
end
end
if (ishandle (handle))
set (0, 'CurrentFigure ' ,handle);
else
error ('Wrong graphic object handle!");
end

if (size (direction , 2)==1)
direction=direction.';
end

% normalize to 1
direction=direction/ nom (direction, 'fro"');

linemat=[direction; direction ];
line (linemat(:,1),linemat(:,2),linemat(:,3), 'Color",
color/255, 'LineWidth "' ,2);

")
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